Вернуться: Смолы

Теория

Смолы


Источник :
Fiberglass Boatbuilding For Amateurs, Glen-L Marine Designs, 1982
Автор : Ken Hankinson
Перевод С.Б.

СМОЛЫ В СУДОСТРОЕНИИ

Как ранее уже говорилось, стеклопластиковый ламинат состоит из двух материалов, которые в сумме обладают более высокими характеристиками , нежели каждый из них в отдельности. Один из компонентов, стекловолокно, рассматривался в предыдущей главе. Второй элемент композита — смола. Наука, занимающаяся пластиками, создала такое количество различных видов смол, что остается только диву даваться, как самим химикам еще удается в них ориентироваться. Однако применительно к стеклопластиковому судостроению, мы имеем дело всего с несколькими их типами .

Два вида смол, наиболее часто применяемые для постройки стеклопластиковых лодок — это эпоксидные и полиэфирные. Для начала мы уделим немного внимания эпоксидным смолам, в силу редкости их применения. Абсолютное большинство смол, использующихся в судостроении, составляют так называемые ненасыщеные полиэфирные, независимо от того, кто строит — профессионалы или любители. Именно поэтому данный тип заслуживает наиболее подробного рассмотрения.

Как эпоксидные, так и полиэфирные смолы относятся к разряду термореактивных смол. Это означает, что их отверждение происходит за счет химической реакции и впоследствии их нельзя вернуть назад в жидкое состояние путем теплового воздействия (как это возможно с термопластичными смолами). Термореактивные смолы представляют собой сиропообразные жидкости различной степени вязкости и обладают рядом специфических свойств, которые мы подробно рассмотрим, чтобы предоставить возможность осознанного выбора исходя из поставленной цели.

ЭПОКСИДНЫЕ СМОЛЫ

Эпоксидные смолы имеют малое распространение в стеклопластиковом судостроении, в первую очередь из-за своей дороговизны. Разумеется, данная ситуация может измениться — невозможно предугадать превратности мировой энергетики. Но даже и в этом случае маловероятно, что они вытеснят полиэфирные смолы по целому ряду других причин (далее это станет очевидно) : главным образом потому, что в большинстве случаев полиэфирные смолы с запасом отвечают поставленным требованиям и оттого необходимость в применении эпоксидных отсутствует.

Эпоксидные смолы состоят из двух компонентов, которые при смешивании вступают в реакцию и полимеризуются. Компонент, вызывающий полимеризацию, обычно именуют отвердителем. В отличие от полиэфирных смол с их незначительным количеством катализатора, отвердители для эпоксидных смол составляют значительную долю в составе рабочей смеси. Соотношение смолы с отвердителем может лежать в широком диапазоне в зависимости от ее состава. К примеру, одни эпоксидные смолы требуют соотношения 1:1 , а другие — 5:1. От невероятно широкого ассортимента смол и отвердителей у новичка голова может пойти кругом.

Меняя комбинации смол и отвердителей, грамотный химик способен получить эпоксидные композиции, обладающие самыми различными свойствами. Некоторые из этих свойств могут оказаться полезными для наших с вами целей, хотя в большинстве случаев это не так. Чтобы подобрать композицию, пригодную для судостроения, необходимо либо обладать солидным запасом знаний и опыта, либо абсолютно доверять ее этикетке.

Может возникнуть вопрос — а зачем вообще нужны эпоксидные смолы ? Если не вдаваться в детали — у эпоксидных смол выше прочность клеевого соединения (как клей они идеальный материал), у них меньше усадка, в отвержденном состоянии они меньше фильтруют влагу, лучше противостоят абразивному износу и обладают лучшими физико-механическими свойствами. Существует бесконечное множество комбинаций и вариаций эпоксидных смол и для узкоспециальных целей производители имеют возможность предложить составы с такими характеристиками, достичь которых полиэфирные смолы не смогут никогда.

Все эти достоинства эпоксидных смол тем не менее не отменяют их недостатков, когда речь заходит о производстве стеклопластика. В первую очередь имеется в виду рост затрат. Эпоксидные смолы требуют более аккуратного обращения (хотя можно оспорить данный пункт после изучения вредностей полиэфирных смол). Эпоксидные смолы медленнее полимеризуются , и это тормозит производственный процесс (одна из главных причин, почему производители их сторонятся), они сложнее в обработке, в особенности при изготовлении на болване.

Другая проблема эпоксидных смол связана с их свойством терять вязкость при повышении температуры в ходе экзотермического отверждения. Это создает трудности при работе со смолой на вертикальных и наклонных поверхностях и в паре с медленным отверждением делает работу по ламинированию в таких условиях крайне утомительной. Эпоксидные смолы используются для приклеивания тканых материалов к заполнителям типа пенопластов, однако применение большинства видов эпоксидных смол для пропитки стекломата обычно лишено смысла — мат потребляет огромное количество смолы и стоимость обычного ламината будет значительно выше, чем с применением полиэфирной смолы. Можно возразить, что лучшая адгезия эпоксидной смолы позволяет избавиться от использования стекломата между слоями тканых материалов и (вероятно) получить в результате стеклопластик с более высокими характеристиками. Однако для большинства лодок подобное «улучшение» не оправдывает связанного с этим роста проблем и затрат. Несмотря на то, что клеящие свойства эпоксидной смолы выше чем у полиэфирной, прочность эпоксидного стеклопластика выше не в пропорциональной степени.

Тем не менее есть ситуации, где эпоксидные смолы зарекомендовали себя наилучшим образом и, несмотря на ограниченное использование в качестве конструкционного материала, нашли широкое применение, в особенности в качестве клея. При нанесении защитных покрытий на многие материалы или при их склеивании «на века» настоятельно рекомендуются именно эпоксидные смолы. К таким материалам относятся алюминий, сталь, тик, дуб, эвкалипт, туя, кипарис, материалы с непористыми поверхностями. Короче говоря, эпоксидные смолы представляют собой превосходные клеи, чего нельзя сказать про полиэфирные смолы. Несмотря на то, что эпоксидные смолы могут применяться с тканевыми материалами для улучшения их связи или в расчете на жесткую эксплуатацию, высокая стоимость препятствует их широкому применению.

Жидкую эпоксидную смолу можно наносить поверх отвержденной полиэфирной и наоборот ; та и другая НЕ ДОЛЖНЫ соприкасаться в неотвержденном или жидком виде. Первая из смол должна быть полностью отвержденной. Также обращаем ваше внимание, что хотя эпоксидные смолы хорошо клеятся к отвержденным полиэфирным, в обратной комбинации полиэфирная смола на эпоксидной держится плохо. Если возникнет необходимость приклеивания к отвержденной эпоксидной поверхности , она должна быть зачищена шкуркой или хотя бы протерта растворителем . Это позволит обеспечить максимально возможную адгезию.

Если при монтаже оборудования на поверхность полиэфирного стеклопластика в качестве клея используется эпоксидная смола (либо иной пригодный для этих целей клей), всегда существует опасность расслоения полиэфирного пластика либо отрыва гелькоута. Нагрузки на приклеиваемую деталь не должны быть направлены на ее отрыв от полиэфирной поверхности, т.к. прочность эпоксидного клеевого шва под деталью превышает прочность связи полиэфирных слоев в ламинате. Поскольку это может привести к его ослаблению или разрушению, всегда следует практиковать механическое крепление к стеклопластику, используя описанные далее методы.

Если вы собираетесь использовать эпоксидные смолы, примите максимальные меры предосторожности, в особенности что касается аминных отвердителей. Многие эпоксидные компаунды могут приводить к серьезным дерматитам, ожогам кожи и проблемам органов дыхания даже у того, кто наивно полагает, что у него иммунитет. Мне приходилось встречать людей, которые не внимали этому совету, поскольку работали с эпоксидной смолой голыми руками многие годы и не имели при этом никаких проблем. Затем внезапно, без малейших сиптомов, у них вдруг развивалась сильная сыпь или возникал дерматит, причем иногда в такой степени, что необходима была госпитализация. Поэтому всегда работайте с эпоксидной смолой только в защитной одежде, перчатках и с защитным кремом. При шлифании одевайте очки и респиратор. В рабочую зону необходим приток и циркуляция свежего воздуха. Если эпоксидная смола окажется на коже, ее необходимо немедленно смыть водой с мылом или денатурированным спиртом.

ПОЛИЭФИРНЫЕ СМОЛЫ

До сих пор наиболее широко используемым типом смол в стеклопластиковом судостроении остаются полиэфирные. Физико-механические свойства у полиэфирных смол несколько хуже чем у эпоксидных и их химическая стойкость также ниже. Тем не менее, применительно к судостроению все эти факторы не играют решающей роли и перевешиваются сравнительной дешевизной, возможностью быстрого отверждения при комнатной температуре, простотой изготовления и легкостью в обращении. Долговременная химическая стойкость и долговечность полиэфирных смол считаются вполне достаточными для большинства стеклопластиковых лодок.

Полиэфиры — это продукты нефтехимии, берущие свое начало в ходе процесса перегонки нефти. Пускай это покажется чересчур усложненным, но мы все же опишем в общих чертах процесс их производства.

Для приготовления смолы различные ангидриды, многоосновные кислоты, гликоли и стирол получают из бензола, пропилена и этилена, затем они смешиваются вместе и «варятся» в больших емкостях до образования «базовой» смолы. В какой-то момент технологического процесса происходит разбавление базовой смолы стиролом, который составляет значительную часть полиэфирной смолы (от трети до половины конечного продукта). После разбавления смолы стиролом она готова к продаже, необходимо только внести добавки, определяемые спецификой сферы применения конкретной смолы. Естественно, производитель способен играть составом смолы. Он может добавлять в нее различные наполнители, акселераторы и прочие модификаторы, что приводит к появлению множества самых разных полиэфирных смол. Большое значение при этом имеет сфера применения конечного продукта, в чем мы далее убедимся.

Если бы обрисованный выше процесс приготовления полиэфирной смолы был доведен до своего конца, в результате мы получили бы полностью отвержденную массу. Но поскольку мы фактически прерываем этот процесс на полпути, смола оказывается лишь частично полимеризованной. Отгруженная на этой стадии смола хранит в себе запущенную в ходе «варки» реакцию и через достаточный промежуток времени неизбежно перейдет в твердое состояние сама по себе . Именно поэтому приобретать и использовать следует только свежую смолу, старая смола не обладает необходимыми свойствами уже только оттого, что зашла слишком далеко в своей естественной полимеризации. Большинство производителей смол поступает правильно, давая гарантию свежести товара у себя и своих дистрибьюторов. Как правило, срок годности полиэфирной смолы составляет всего шесть месяцев, хотя при надлежащих условиях хранения год или даже два не являются чем-то из ряда вон выходящим. Срок можно продлить и более, если хранить смолу в холодильнике (не замораживая). Смола должна храниться в сухом прохладном месте, куда не попадают прямые солнечные лучи и где температура не слишком превышает +20 градусов.

АКСЕЛЕРАТОРЫ И КАТАЛИЗАТОРЫ

Тот, кто работает со смолой, не может ждать вечность, пока смола затвердеет сама по себе. Чтобы она полностью полимеризовалась («доварилась») , требуются еще два дополнительных компонента. Первый называется акселератором (или активатором, что одно и то же), а второй катализатором (иногда его называют «отвердителем»).

Оба компонента выступают в паре и способствуют ускоренному отверждению смолы. Фактически катализатор выступает тем источником внутреннего теплообразования, за счет которого и происходит отверждение, а акселератор делает этот процесс возможным при естественной температуре без применения внешних источников тепла. В результате процесса полимеризации не образуется никаких побочных продуктов. Именно соотношение этих двух ингредиентов определяет ход отверждения (чаще говорят про время желатинизации) и время, необходимое для превращения смолы в твердое состояние.

Катализаторы и акселераторы являются веществами, которые работают только в определенных комбинациях, и несколько таких комбинаций применяются с полиэфирными смолами. Для большинства работ в судостроении стандартным акселератором является вещество, именуемое на техническом языке нафтенатом кобальта (жидкость пурпурного цвета), а в качестве катализатора обычно выступает пероксид метил-этил-кетона. Иногда можно услышать как кто-то называет его «МЭК», что совершенно ошибочно. МЭК (без буквы «П») — это метил-этил-кетон, родственный ацетону растворитель и катализатором он не является. Поэтому грамотно будет называть его далее МЭК-пероксидом.

Тепло , производимое этими двумя веществами, когда они смешиваются в смоле, является результатом быстрого окисления , его скорость зависит от количества и пропорций этих компонентов (того и другого требуется совсем немного), окружающей температуры на рабочем месте и еще нескольких дополнительных факторов, о которых мы будем говорить далее. Катализатор в своем чистом виде слишком взрывоопасен, поэтому он поставляется в виде смеси с инертным растворителем и перекисью водорода. Из-за того что у разных производителей катализаторов соотношения могут различаться, характеристики отверждения также могут быть различны. Поэтому, если вы поменяли марку катализатора, сделайте пробу для оценки времени отверждения и конечных свойств смолы.

Было время, когда полиэфирные смолы проступали в продажу, не имея в своем составе акселератора (т.е. были непредускоренными). Акселератор должен был добавляться конечным пользователем наряду с катализатором. Однако иногда случались серьезные инциденты — жестокая практика показала, что когда нафтенат кобальта и МЭК-пероксид встречаются одновременно, возможен их взрыв с последующим пожаром . Это происходит из-за бурного неуправляемого выделения кислорода в ходе реакции между двумя этими веществами.

Как результат, производители сегодня обычно вводят нафтенат кобальта (0.05-0.5% по весу) в смолу еще на заводе (смола называется предускоренной), а катализатор поставляется отдельно и вводится конечным потребителем. И хотя оба вещества по-прежнему можно приобрести по отдельности, важно помнить главное правило безопасности :

КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ СМЕШИВАТЬ НАФТЕНАТ КОБАЛЬТА И МЭК-ПЕРОКСИД ОДНОВРЕМЕННО ! РЕЗУЛЬТАТОМ МОЖЕТ БЫТЬ БУРНАЯ РЕАКЦИЯ, ПОЖАР И ВЗРЫВ .

При введении катализатора в предускоренную смолу происходит ее отверждение , вызванное тепловой реакцией. Скорость реакции зависит от окружающей температуры и количества катализатора, хотя на нее могут иметь влияние и другие факторы.

К примеру, высокая влажность обычно тормозит отверждение, а низкая ускоряет. При хранении катализаторы теряют свои свойства , поэтому с несвежим катализатором для достижения того же времени желатинизации может потребоваться большее его количество. Смола отверджается быстрее, будучи в компактном объеме и медленнее, будучи распределенной по большой поверхности в форме тонкого слоя (вы можете повысить время жизнеспособности смолы, если воспользуетесь неглубокой широкой посудой или кюветами для краски вместо емкостей цилиндрической формы). Другой способ продлить жизнеспособность — во время перерывов убирать смолу с введенным катализатором в холодильник, поставить емкость на лед или в ведро с холодной водой.

Среднее количество вводимого катализатора составляет 1-2% по весу, но вариации в диапазоне от 0.5% до 5% не сильно повредят конечному ламинату, при условии что ваши обстоятельства того требуют. Вероятно, лучше добавлять катализатор немного выше нормы, чем ниже — по крайней мере пока вы не освоитесь с предметом. И хотя много написано на тему точности дозировки катализатора, после накопления некоторого опыта применительно к своим условиям, вы сможете отмерять нужные количества в основном «на глаз».

Несмотря на то, что рабочая температура окружающего воздуха должна быть +20 градусов и выше, случаются ситуации , когда кому-то нужно работать и в более прохладной обстановке. Для ОЧЕНЬ холодных условий (применительно к стеклопластику, это от +5 до +15 градусов) может потребоваться приобретение специальной низкотемпературной смолы , либо добавка в нее большего количества нафтената кобальта с катализатором. Если смола не полимеризуется за несколько часов, существует опасность того, что ламинат впитает влагу и может сильно потерять в прочности и других физико-механических характеристиках.

При температурах ниже +15 С всегда существует опасность неполного отверждения, что грозит серьезными последствиями. Если не позаботиться о поддержании температуры рабочего места, материалов и поверхности матрицы (болвана) на уровне необходимых +20 С и более, сроки полимеризации окажутся нарушенными.

Для примера можно сказать, что время желатинизации увеличивается на 6-10 минут с падением температуры на каждый градус цельсия. Если сегодня вы работали при температуре +20 С, а завтра она упала до +15 С, время желатинизации может возрасти на 30-50 минут. Это означает, что настоятельно не рекомендуется заниматься работами со смолой, если вы не в состоянии обеспечить на рабочем месте как минимум +15 С. Если же температура приближается к этой границе, следует в качестве меры предосторожности использовать смолу с повышенным содержанием нафтената кобальта. Наличие лишнего кобальта снижает срок хранения смолы до самого минимума, поэтому хранить ее следует при температуре не выше +20 градусов в сухом месте.

Напоследок еще несколько советов о катализаторах. Не пытайтесь заменить требуемый для смолы катализатор каким-либо другим и не забывайте добавлять его в каждую партию. Если вы забудете про катализатор, смола может никогда не полимеризоваться. Если это случится на внутреннем слое ламината, вам нужно будет снимать все вышележащие слои и начинать все сначала, что при отвежденных наружных слоях может оказаться нереальным или по крайней мере трудоемким процессом. Попытки нанести катализатор при помощи краскопульта или кисти приведут к образованию на поверхности тонкой корки, не более. Следует также добавить, что обращение с катализатором такими методами крайне опасно.

КОНСТРУКЦИОННЫЕ И ОТДЕЛОЧНЫЕ СМОЛЫ

Полиэфирные смолы относятся к веществам, для которых воздух является ингибитором. Это означает, что поверхность смолы, контактирующая с воздухом, не отверждается (по крайней мере полностью). Даже когда смола перейдет в твердое состояние, ее поверхность по-прежнему будет оставаться липкой. Чтобы дать смоле возможность полного отверждения и избавиться от липкости, ее надо изолировать от воздуха. Этого можно добиться двумя способами.

Как правило, приобретается специальная смола, содержащая в составе изолирующую добавку, которой обычно является воск. Как только смола наносится, повышение ее температуры в ходе экзотермической реакции заставляет воск всплыть на поверхность, перекрыть доступ воздуха и дает смоле возможность встать. Такие полиэфирные смолы с содержанием воска относятся к отделочным, т.к. используются в заключительном слое всего изделия. Немного погодя мы расскажем о том, как самим изготовить такую смолу.

Второй способ отверждения предполагает изоляцию поверхности от воздуха ПОСЛЕ нанесения смолы при помощи какого-либо вида пленочного покрытия. Это может быть, к примеру, материал типа целлофана или майлара (тот и другой именуют разделительными пленками); изолирующий слой можно создать, нанося сверху поливиниловый спирт (PVA) при помощи краскопульта. Все эти методы изоляции, однако, ограничиваются небольшими участками и годятся лишь в случае ремонта. Для отверждения заключительного слоя стеклопластика большинству любителей следует использовать смолу с содержанием воска.

Смолы, не содержащие восковой добавки, как упомянутые выше отделочные, относятся к конструкционным. Таким образом , мы подошли к простой классификации полиэфирных смол, обычно применяемых в стеклопластиковом судостроении :
— Конструкционные смолы (воздух препятствует отверждению , не содержат воска)
— Отделочные смолы (воздух не препятствует отверждению, содержат воск)

На всем протяжении процесса постройки, за исключением последних слоев, должна использоваться конструкционная смола. Причина этого заключается в том, что стеклопластик представляет собой неоднородный материал, о чем зачастую многие не в курсе. Стеклопластик — это набор слоев стекловолоконного армирования, каждый из которых пропитан смолой и приклеен к соседнему. Можно построить полную аналогию с листом фанеры и ее склееными слоями шпона.

Поверхности слоев ламината, пропитанных конструкционной смолой, сохраняют липкость в процессе набора толщины и обеспечивают прочную связь с последующими слоями. Эти связи называют промежуточными. Если бы для целей ламинирования использовалась отделочная смола, для обеспечения адгезии слоев всплывающий к поверхности воск необходимо было удалять перед каждым последующим слоем, и существует только два способа , как это сделать.

Во-первых, воск с поверхности можно попытаться смыть или стереть растворителем типа ацетона. Однако данный метод , по крайней мере в отношении больших площадей, имеет такой минус, что по ходу процесса воск накапливается и больше размазывается вокруг. Второй, и наиболее эффективный метод — удалить воск шлифованием. При ламинировании будет крайне утомительным делом, если каждый новый слой необходимо будет подвергать такой обработке перед укладкой последующего. Поэтому наш вам совет — в первую очередь использовать конструкционную смолу, чтобы процесс ламинирования можно было вести непрерывно. При этом будет обеспечена надежная промежуточная связь слоев , которая в случае применения отделочной смолы всегда была бы под вопросом. К вощеной поверхности смола просто не клеится.

КАК САМИМ ПРИГОТОВИТЬ ОТДЕЛОЧНУЮ СМОЛУ

Чтобы упростить процесс закупки , вы можете приобрести всего один тип конструкционной смолы на всю лодку и приготовить отделочную смолу самостоятельно, используя конструкционную смолу и воск (или «поверхностно-активную добавку», как его еще называют).

Для начала давайте поясним, как происходит получение отделочной смолы на производстве. Когда идет процесс «варки» смолы , имеет место высокая температура и добавленный в это время воск легко перемешивается со всей партией смолы. Таким образом производитель гарантирует высокую степень отверждения ее поверхностного слоя.

В отличие от этого, самостоятельное смешивание воска или специальной «активной» добавки (раствора парафина в стироле) со смолой обычно происходит при комнатной температуре. При низкой температуре вы не сможете добиться однородности смеси. Не стоит пытаться нагреть смолу, как это происходит на производстве — это опасно. Добейтесь того, чтобы у смолы была обычная комнатная температура не менее +18 С , а желательно +20 С или выше. Поверхностная добавка также должна иметь такую температуру. На холоде ее раствор может принимать мутноватый вид или на поверхности может образовываться твердый прозрачный слой . Если подобное имеет место, сосуд с добавкой необходимо нагреть до +30 С, поместив его в емкость с теплой водой из-под крана. Ни в коем случае не следует использовать для этих целей источники открытого огня и электронагреватели . Следите за тем, чтобы вода не попала в емкость. Если смола также не соответствует нужной температуре, ее можно подогреть аналогичным образом, что улучшит распределение воска в объеме смолы.

Количество поверхностно-активной добавки может лежать в пределах 1-5% от ВЕСА смолы, 2-3% будет оптимальным. При использовании ее с винилэфирными смолами лучше провести предварительный тест — для нужной степени отверждения данного типа смол может потребоваться повышенная концентрация воска. Воск в смолу добавляется ДО введения катализатора и растирается тщательно, но не слишком агрессивно, чтобы не насыщать смолу большим количеством воздушных пузырьков. Очень важно добиться качественного перемешивания всего объема. Поверхностная добавка в смоле хорошо заметна , она выглядит как шелковистая пленка и эту пленку надо тщательно перемешать со всем объемом. Неплохо будет также почаще растирать ее во время использования.

Если раствора с воском добавлено излишне много, вязкость смолы может слишком упасть из-за повышенного содержания стирола, являющегося основным компонентом смолы и выступающим также в роли ее разбавителя. При недостатке воска не произойдет полного повсеместного отверждения поверхности и в худшем варианте развития событий ее придется сошлифовывать и покрывать еще одним слоем смолы с увеличенным содержанием воска (плюс, вероятно с повышенным процентом катализатора, чтобы получилось т.н. «горячее» покрытие). Практика, однако, показывает, что обычно материалы обладают достаточно широким допуском и проблемы возникают довольно редко. Наиболее частая их причина заключается в том , что компоненты плохо перемешиваются друг с другом и необходимая для этого температура совершенно не соблюдается.

При работе с раствором воска соблюдайте осторожность — материал опасен при вдыхании и попадании внутрь и раздражает кожу, глаза, нос и горло. Держите его подальше от детей, старайтесь не вдыхать его аэрозоль и работайте только при достаточной вентиляции. Храните емкость плотно закрытой и при попадании воска на одежду выстирайте, прежде чем одеть ее вновь.

ТИКСОТРОПНОСТЬ

Термин, зачастую приводящий новичков в замешательство. Большинство считает, что тиксотропная смола — это просто густая смола, что совершенно ошибочно. Можно также встретить в рекламных буклетах заявления типа «наша смола тиксотропная и не образует наплывов и подтеков». Настоящее же определение тиксотропности смолы заключается в ее способности густеть в состоянии покоя и вновь обретать свойства жидкости при перемешивании.

Это довольно мутное определение от инженеров по пластикам в переводе на нормальный язык означает, что тиксотропность сводит к минимуму склонность смолы к образованию подтеков. Сообщения о том, что где-то существуют судостроительные смолы, не образующие наплывов — из области мифологии. ВСЕ полиэфирные смолы в той или иной степени плывут на вертикальных и наклонных поверхностях. Можно приготовить такую смолу, которая не будет стекать , однако использовать подобную смолу для стеклопластика окажется просто невозможно — за время до своего отверждения она не успеет пропитать стекловолокно. Работать с такой смолой нельзя.

Тиксотропность — величина переменная, у одних смол она больше, у других меньше. С осторожностью относитесь к рекламе таких смол, у которых акцентируется их тиксотропность — пропитать ими стекло может оказаться труднее, чем менее тиксотропными ; они также могут обладать повышенной усадкой. Введенный в смолу для придания ей тиксотропности наполнитель при его излишке отрицательно сказывается на характеристиках смолы. Тиксотропность — это палка о двух концах, у нее есть положительные и отрицательные стороны, в зависимости от назначения смолы. Если речь идет о формовке стеклопластика, в тиксотропности смолы нет большой необходимости.

В определенных ситуациях, как например при пропитке материала C-FLEX, для получения удовлетворительных результатов требуется смола, абсолютно лишенная тиксотропности. Тиксотропность смолам придается, как правило, путем введения наполнителей типа двуокиси кремния.

Не следует путать понятия тиксотропности смолы и ее вязкости — свойства смолы сопротивляться растеканию. Смолы выпускаются самой различной вязкости, точно так же как масла для автомобильного двигателя, и под конкретную цель существует смола с определенной вязкостью. Вне зависимости от того, какая у смолы вязкость (высокая или низкая), она может обладать различной степенью тиксотропности.

К примеру, высоковязкая смола может иметь очень низкую тиксотропность (наполнитель отсутствует или его мало), в то время как низковязкая смола может содержать тиксотропные добавки, и наоборот. Вязкость — параметр, который формируется в ходе технологического процесса производства смолы, тиксотропность же обеспечивается путем введения впоследствии специальных добавок и наполнителей (при этом увеличивается и ее вязкость).

ЭЛАСТИЧНОСТЬ СМОЛЫ

Смолы делятся на жесткие, полужесткие и эластичные (терминология весьма относительная). Хотя все полиэфирные смолы и схожи, при их производстве можно добиться широкого спектра свойств, меняя базовые составляющие компоненты и их пропорции.

Эластичность отвержденной смолы характеризуется величиной ее удлинения при разрыве под растягивающей нагрузкой. От того, является смола жесткой, полужесткой или эластичной, зависит ряд ее других свойств. Давайте рассмотрим некоторые из них.

Жесткие смолы. Обладают самыми высокими физико-механическими характеристиками, однако хрупки и имеют малую ударопрочность. Данный тип смол годится для небольших лодок с малоразвитым внутренним набором или вовсе без него, либо для более крупных, однако с хорошо развитым набором (под набором подразумеваются различные внутренние элементы усиления). Удлинение жестких смол при разрыве составляет 0.5-3.0% .

Полужесткие смолы. Их состав направлен на повышение пружинящих свойств и ударной прочности по сравнению с предыдущим типом. У них лучше характеристики старения и они хорошо подходят для постройки крупных корпусов , обладающих каким-либо внутренним конструктивом. Удлинение при разрыве составляет 3-10%.

Эластичные смолы. Для использования в строительстве корпуса данные смолы не подходят, однако часто добавляются в жесткие смолы для получения полужестких (обычно это делает производитель). Данный тип смол обладает высокой гибкостью и эластичностью, удлинение у них составляет свыше 10%.

Хотя может создаться впечатление, что эластичные и в особенности полужесткие смолы имеют ряд потенциальных достоинств и могут повысить стойкость корпуса к ударным воздействиям, большинство специалистов склоняется к мысли, что повышение гибкости корпуса принесет мало пользы его несущей конструкции. Поэтому в судостроении наиболее широко применяются жесткий тип смол общего назначения , а корпуса обеспечиваются необходимым внутренним конструктивом. Исключением является случай гелькоута, применяемого в матрицах при формовании — ему требуются полужесткие или эластичные свойства, несмотря на то, что в ламинате корпуса используются смолы более жестких типов.

ОТРОФТАЛЕВЫЕ, ИЗОФТАЛЕВЫЕ и ВИНИЛЭФИРНЫЕ СМОЛЫ

Если вам вдруг показалось, что теперь вы все знаете о полиэфирной смоле, мы готовы вылить на вас очередную порцию информации.

Рано или поздно при путешествиях по полиэфирным дебрям вы наткнетесь на понятия «ортофталевой» , «изофталевой» и «винилэфирной» смол. Имеют ли эти термины значение в нашей судостроительной практике ? Для начала, не стоит впадать в отчаяние — все три типа относятся к полиэфирным смолам и являются их разновидностями. Основные различия, по крайней мере с точки зрения химии, заключаются в том , что при схожести техпроцесса они различаются молекулярной массой и строением. Причины этих различий заключаются в характеристиках конечного стеклопластика и условиях его эксплуатации.

Ортофталевые и изофталевые смолы имеют различия в кислотной основе смолы. С точки зрения молекулярного строения изофталевые смолы усторены более сложно чем ортофталевые, а винилэфирные сложнее тех и других. Однако все три — это полиэфирные смолы. Чтобы излишне не усложнять ситуацию, скажем сразу, что самый распространенный тип смол в стеклопластиковом судостроении (особенно если речь идет о любительском) — это ортофталевые. Почему ? В первую очередь — из-за своей низкой стоимости, а также из-за того, что характеристики, которыми обладают изофталевые и винилэфирные смолы, как правило, не нужны большинству лодок (хотя в применении изофталевых и наблюдается рост).

Каковы же могут быть причины применения изофталевой и винилэфирной смолы вместо ортофталевой ? Та и другая обладают улучшенными физико-механическими свойствами и обеспечивают стеклопластику более высокие характеристики. К примеру, у изофталевой смолы выше коррозионная стойкость и стойкость к растворителям (по сравнению с ортофталевой) , она более прочная и лучше держит удары. Именно поэтому ее чаще всего используют в гелькоутах. У изофталевой и винилэфирной смолы также лучше адгезионные свойства.

По своей химической и коррозионной стойкости винилэфирные смолы обходят изофталевые, и к тому же сохраняют свои высокие механические свойства при повышенных температурах — качество, весьма ценное при использовании в аэрокосмической отрасли. Их высокая химическая стойкость находит применение при изготовлении стеклопластиковых емкостей и в различных отраслях промышленности.

Винилэфирным смолам свойственна эластичность при растяжении ; это обеспечивает изготовленному на их основе ламинату более высокие характеристики, что важно там, где нет возможности избежать высоких нагрузок (циклических и вибрационных) на этапе проектирования. Сферой применения, где такие качества могут быть в цене, являются, к примеру, быстроходные гоночные катера для открытого моря.

У многих специалистов по стеклопластиковым композитам и химиков в области смол вызывает недоумение возросший интерес к винилэфирным смолам в судостроении. Как они утверждают, совершенно достаточной прочности и других механических характеристик можно достичь , применяя самую обычную орто- и изофталевую смолу с правильными стекломатериалами по правильной технологии. Если не поставлена задача сохранения высокой прочности при повышенных температурах или стойкости к химическим веществам и коррозии — нет никакого смысла платить лишнюю цену за использование винилэфирной смолы. Позже мы еще будем обращаться к более подробному обсуждению этих видов смол.

У винилэфирной смолы имеются и другие недостатки. Срок годности у них зачастую гораздо меньше чем у обычных полиэфирных. Многие поступают в продажу непредускоренными и требуют самостоятельного введения ускорителя. Этот момент осложняется тем, что с винилэфирными смолами применяются иные, более сложные системы в виде известного нам нафтената кобальта в паре с веществом под названием диметиланилин (или ДМА) — крайне опасного и являющегося канцерогеном.

Из-за того, что для винилэфирной смолы помимо катализатора могут потребоваться еще два ускорителя, работать с ними сложнее в плане сроков желатинизации и полимеризации, т.к. они зависят от пропорций сразу трех ингредиентов. Для любителя это может оказаться слишком сложным и привести к ошибкам с непредсказуемыми результатами. Именно по этой причине, и с учетом потенциальной угрозы здоровью и безопасности, некоторые эксперты в области смол считают, что введение ускорителей в полиэфирную смолу нельзя доверять конечному потребителю. Независимо от того, предускорен винилэфир или нет, потребителю рекомендуется обращаться к производителю или поставщику смолы за рекомендациями по ее пригодности для конкретных изделий и правильному построению техпроцесса.

Может возникнуть вопрос — оправдано ли вообще использование винилэфирных смол ? Многие производители быстроходных судов, строящие единичные экземпляры для участия в соревнованиях, считают, что да . В особенности это касается тех, кто использует ее в комбинации с высокомодульными армирующими материалами, рассматриваемыми далее. Они аргументируют это тем, что характеристика любого композитного материала зависит не только от материалов армирования , их комбинации и ориентации в ламинате , но также и от типа применяемой смолы. Считается, что винилэфиры обеспечивают повышенную ударопрочность, противостоят абразивному износу, более водостойки , эластичны, в особенности когда используются совместно с высокомодульными волокнами.

На данный момент проведено недостаточно испытаний, которые бы подтвердили эти заявления, и многие специалисты склоняются к мысли, что применение винилэфирных смол вместо прочих полиэфирных, является скорее данью моде. Тем не менее, автор имел возможность ознакомиться с эмпирическими результатами сравнительных испытаний винилэфирной и полиэфирной смолы в сэндвичевой конструкции , состоящей из пенопластового заполнителя и тонких наружных оболочек из высокомодульного материала. И хотя данные говорили о лучшей адгезии оболочек к заполнителю и лучшей ударопрочности, в случае применения этих смол любителями, их реальные и мнимые достоинства просто не оправдывают связанных с этим расходов и проблем. В большинстве случаев характеристик ортофталевой полиэфирной смолы будет совершенно достаточно, а если нужно нечто лучшее, всегда можно обратиться к полиэфирной изофталевой. И если в настоящее время изофталевые смолы стоят на 10% дороже ортофталевых, то винилэфирные стоят практически вдвое дороже. Для большинства любителей один только этот фактор ставит крест на использовании данного вида смол.

САМОЗАТУХАЮЩИЕ СМОЛЫ

При поджигании отвержденной полиэфирной смолы она загорается восхитительным пламенем и горит до тех пор, пока ее не потушат, либо пока не кончится сам горючий материал. Естественно, этот факт может действовать на нервы владельцу такой лодки, но то же самое может произойти в какой-то момент и с любой другой лодкой, независимо от материала ее корпуса. Чтобы сделать полиэфирную смолу менее уязвимой, желательно придать ей «огнеупорность», т.к. другая часть стеклопластика — стекловолокно — не горит.

Хотя ни одна смола не является полностью огнеупорной, существуют смолы самозатузающие. Это означает, что пока существует внешний источник горения, эти смолы меняют цвет, дымят и обугливаются , но как только источник пламени устраняется, они гаснут сами собой.

Самозатухающие смолы готовятся производителем путем введения в смолу различных ингредиентов типа оксида сурьмы, гидрата алюминия или хлорированых парафинов (восков). Это качество смолы может быть также получено путем формирования особой структуры химического строения смолы. Казалось бы, применение самозатухающих смол должно стать рекомендуемой практикой в стеклопластиковом судостроении, особенно когда речь идет о двигательных и топливных отсеках, камбузах, где существует повышенная опасность возникновения пожара. И в самом деле, когда правительство США заказывает стеклопластиковые суда для своих ВМС или Береговой Охраны, оно обычно требует использования именно этого вида смол. В таком случае отчего большинство фирм, серийно выпускающих стеклопластиковые лодки, не применяют эти смолы ?

Первым предположением о причинах такой ситуации скорее всего будет нежелание производителей применять такие смолы из-за их высокой стоимости, что и в самом деле имеет место. Тут можно возразить, что для большинства случаев эта повышенная стоимость вполне может быть оправдана. Скажем, за счет негорючести вплоне можно рассчитывать на снижение суммы страховых взносов. Однако здесь мы сталкиваемся с преодолением ряда проблем иного рода. Например, некоторые из самозатухающих смол обладают высокой вязкостью, что осложняет работу с ними (особенно для любителя). В некоторых случаях введенные в состав вещества не связываются химически со смолой и могут тем самым ухудшать физико-механические свойства смолы, понижать ее стойкость к воздействиям внешней среды или вымываться водой, приводя к потере защитных качеств.

Самозатухающие смолы производят при сжигании густой дым и выделяют газы (как и прочие полиэфирные смолы), что несколько омрачает их огнестойкие качества. Другая проблема — у самозатухающих смол дольше время отверждения и они более чувствительны к процентному соотношению вводимого катализатора. Химики рекомендуют добавлять не менее 1% катализатора (по объему), в противном случае изделие может оказаться излишне гибким. Из-за зависимости времени отверждения от температуры требуется быть очень точным в определении количества катализатора, необходимого для полного отверждения самозатухающей смолы.

Легко заметить, что когда речь идет о стеклопластиковых судах для нужд государства, дороговизна и трудоемкость применения этого вида смол не имеют большого значения, т.к. выставленный счет оплачивают из своего кармана налогоплательщики. Но для среднестатистического любителя, ограниченного в средствах и имеющего и без того кучу проблем при реализации своего первого проекта, использование самозатухающих смол вряд ли себя оправдывает. Вероятно, частично этот вопрос можно разрешить путем использования обычной полиэфирной смолы во всем ламинате, за исключением наружных слоев, где использовать самозатухающую смолу, либо использовать ее только в тех местах, где вероятность возникновения пожара наиболее высокая. Этот вариант может оказаться не вполне успешным и возможно, лучше вместо этого вложить деньги в хорошую противопожарную систему (независимо от размеров лодки).

РАЗБАВЛЕНИЕ СМОЛЫ И ПРИМЕНЕНИЕ КРАСКОПУЛЬТА

Обычно разбавление смолы (как впрочем, и обратный процесс) при формовании стеклопластика не рекомендуется. Совершенно недопустимо разбавлять смолу с целью увеличения ее «объема» в надежде сэкономить денег. Подобные действия наносят серьезный удар по характеристикам смолы и приводят к получению стеклопластика с неопределенными свойствами и долговечностью. В случае самой крайней необходимости, смолу можно разбавить введением до 5% ацетона (по весу) для нанесения краскопультом. Введение в смолу ацетона с какими-либо другими целями категорически запрещается. Но даже при распылении смолы применение ацетона является весьма спорной практикой. Ацетон не принимает участия в ходе отверждения смолы, и более того — за счет своего интенсивного испарения понижает температуру смолы и тем самым увеличивает сроки ее отверждения. При нанесении смолы краскопультом ацетон оказывается закупорен внутри смолы, как в ловушке, и при быстром его испарении вся поверхность смолы оказывается пористой. При дальнейшем отверждении смолы улетучивание ацетона может приводить к образованию трещин, усадке и дефектам поверхности.

Лучшим разбавителем в данной ситуации является жидкий мономер стирол , потому что он изначально содержится в смоле и поэтому совместим с ней. При распылении смолы количество добавляемого стирола зависит от ее вязкости. В некоторых случаях допускается добавлять до 15% стирола по весу , однако обычно пропорции составляют порядка 5%. Низковязкие смолы меньше нуждаются в разбавлении, нежели более вязкие и более тиксотропные. Смола наносится краскопультом обычно на заключительных и отделочных слоях, таким же методом наносится гелькоут при формовании в матрице. Для любителя распыление смолы при обычной укладке ламината имеет мало практического смысла и не рекомендуется. При постройке стеклопластикового корпуса на болване вряд ли вообще существует необходимость в распылении смолы и соответствующем оборудовании. Излагаемая здесь информация предназначена исключительно для тех, кому это интересно и у кого на определенном этапе может возникнуть такая необходимость.

Для работы со смолой вместо обычных краскопультов с сифонной подачей применяются краскопульты с принудительной подачей смолы, это связано с ее повышенной вязкостью. Не забывайте чистить краскопульт ацетоном ДО того как смола встанет, иначе инструмент будет загублен. Одна приготовленная партия смолы наносится краскопультом приблизительно за три минуты, однако катализатор следует вводить в смолу из расчета ее жизнеспособности от 15 до 20 минут. Если при распылении образуются наплывы и подтеки, их следует разровнять при помощи кисти до того как смола желатинизируется.

Приемы, используемые при нанесении смолы краскопультом, схожи с приемами нанесения краски, поэтому, если вам приходилось с этим сталкиваться, никаких проблем при переходе на смолу вы не встретите. Практика тем не менее необходима. Повторные слои отделочной смолы можно наносить, пока смола не встала. Если произошла задержка или смола полимеризовалась, перед нанесением дополнительных слоев поверхность последнего должна быть обработана шкуркой.

При нанесении смолы краскопультом огромное количество ее брызг и паров оказывается в воздухе и представляет серьезную опасность. Работать краскопультом можно только при хорошо работающей вентиляции, в респираторе, избегая применения источников открытого огня, нагрева и курения вблизи рабочей зоны. При использовании стирола в качестве разбавителя следует соблюдать КРАЙНЮЮ осторожность и обязательно использовать защиту органов зрения. Если во время работы со стиролом в непосредственной близости располагаются покрытые гелькоутом матрицы , следите за тем чтобы капли стирола не попали на его поверхность — стирол размягчает гелькоут и оставляет на нем отметины.

ПИГМЕНТИРОВАНИЕ СМОЛЫ

Многие поставщики смолы продают пигменты, которые можно добавлять в смолу с целью придания ей цвета, однако делать это в стеклопластиковом судостроении (по крайней мере при ламинировании) не рекомендуется. Основная причина, почему этого делать не следует, заключается в том, что пигменты снижают прозрачность смолы и затрудняют визуальный контроль качества укладки и обнаружение локальных дефектов, типа обедненных и перенасыщенных участков, воздушных пузырей и т.п. Вторая причина заключается в том, что в применении пигментов нет никакой необходимости и соответственно незачем тратить на это деньги. Введение в смолу пигментов — это лишняя работа и контролировать их пропорции сложно.

Тем не менее, пигментированные смолы находят ограниченное применение в стеклопластиковом судостроении. Стеклопластиковый ламинат в своем естественном состоянии, как правило, полупрозрачен и хорошо пропускает свет. При серийной постройке с использованием матриц гелькоут наносится на их внутреннюю поверхность не только с косметическими целями, но и с целью сделать корпус светонепроницаемым.

Пигментированная смола иногда также применяется и при формовании корпуса на болване. Вместо того чтобы полагаться лишь на наружное лакокрасочное покрытие, некоторые предпочитают добавить пигмент в смолу заключительного слоя или в шпатлевку, чтобы она близко соответствовала цвету нанесенной поверх позже краски. При этом, если основное лакокрасочное покрытие будет поцарапано или ободрано, дефект не будет сильно бросаться в глаза.

Если вы планируете использование пигментов, их следует вводить ДО катализатора. Если при этом используется раствор воска, он добавляется ДО пигмента, чтобы воск было хорошо видно во время перемешивания. Пигменты бывают разные и иногда на их упаковке не содержится никаких указаний по использованию. В большинстве случаев, если отсутствуют конкретные указания, жидкие пигменты смешиваются в соотношении 4 унц. (110 г) пигмента на 1 галлон (3.8 л) смолы. Пастообразные пигменты смашиваются в соответствии с инструкцией. Чтобы добиться хорошей насыщенности цвета, часто во все заключительные слои требуется добавлять больше пигмента, чем кажется необходимым. Излишняя пигментация, однако, замедляет желатинизацию смолы, ее отверждение и приводит к образованию липкой внешней поверхности, поэтому не надо этим злоупотреблять. Не удивляйтесь, если яркий насыщенный пигмент при смешивании со смолой вдруг темнеет и становится мутным, а получившийся цвет не дает ожидаемого блеска — это всего лишь одна из проблем придания смоле окраски и причина того, что они редко применяются при самостоятельной постройке, за исключением гелькоутов.

ГЕЛЬКОУТЫ

Гелькоутами называются пигментированные смолы, обычно эластичного и полуэластичного типа, которые наносятся на внутреннюю поверхность матрицы и являются первым шагом в постройке стеклопластикового корпуса. Гелькоуты могут быть на основе орто-, изофталевой или неопентигликолевой смолы, однако в силу своей прочности и долговечности предпочтение отдается двум последним. Гелькоуты на базе эпоксидных смол в судостроении встречаются редко — полиэфирный стеклопластик, уложенный поверх отвержденного эпоксидного гелькоута, образует с ним непрочные связи. Для корпусов, построенных по подобной технологии, наносимый на поверхность матрицы гелькоут определяет внешность готовой лодки.

Существует огромное многообразие расцветок гелькоутов, но не следует путать их с красками. Гелькоуты предназначены для профессионального применения в условиях промышленного производства с применением матриц. Они совершенно не рассчитаны на начинающих, потому что изначально предполагают аэрозольное нанесение при помощи специального оборудования и методов. Тем не менее, если вы собираетесь строить корпус в матрице, то можете планировать и использование гелькоута. При этом можно либо раздобыть необходимое оборудование для его нанесения и обучиться работе с ним, либо нанести гелькоут при помощи кисти, что не очень рекомендуется делать. В любом случае человеку, решившему встать на этот путь, мы советуем во время работы держать связь с поставщиком гелькоута, который может предоставить необходимую техническую информацию. Эта информация слишком обширна, чтобы быть полностью изложенной в данной книге (хотя в одной из следующих глав предмет будет рассмотрен более подробно). Достаточно будет сказать, что гелькоут — это НЕ КРАСКА и даже если его и наносят краскопультом или кистью, он ведет себя совсем не как краска и требует особых методов; даже при идеальных условиях гелькоут подвержен множеству проблем , которые лучше всего разрешать в контакте с его производителем.

При постройке стеклопластикового корпуса на болване использование гелькоута не приветствуется по многим причинам. Когда лодка строится таким способом, процесс фактически начинается «с изнанки» и наружное покрытие становится одновременно заключительным. Это прямо противоположно постройке в матрице, где наружный слой наносится в матрице в первую очередь.

Большинство смол, на основе которых производятся гелькоуты, плохо отверждается в контакте с воздухом и нуждается в «изоляторе» в виде матрицы. При этом сторона гелькоута, обращенная к поверхности матрицы, имеет возможность отверждения, в то время как обращенная внутрь корпуса сохраняет липкость и способствует повышению межслойной адгезии с последующими слоями стеклопластика. И хотя в подобной ситуации (формование на болване) возможно применение гелькоутов, содержащих воск или покрытие гелькоута поливиниловым спиртом или пленкой (целлофан, майлар), данная практика обычно ограничивается небольшими участками и встречается только при ремонте.

Впридачу к многочисленным гелькоутам для наружного применения существует также множество и других специализированных гелькоутов. Например, существуют гелькоуты для внутреннего применения , их же называют полиэфирными эмалями и иногда «флокоутами». Они используются для покрытия внутренней поверхности стеклопластикового корпуса для придания ему более законченного и привлекательного вида. Данный тип покрытия содержит воск (т.к. в этом случае матрица-изолятор отсутствует) и полимеризуется до твердого состояния. Внутренние гелькоуты часто обладают низким глянцем или его отсутствием и обычно наносятся распылением (хотя большинство может наноситься и валиком, кисть не рекомендуется). При этом может иметь место эффект «шагрени», который маскирует дефекты внутренней поверхности. Вид внутренней поверхности корпуса имеет не такое важное значение как наружной, поэтому внутренние гелькоуты более подходят для непрофессионального применения. Однако в данном случае целью является исключительно косметика и жесткой необходимости в этом нет.

Еще один тип гелькоутов — самозатухающие. Как ранее уже говорилось, данный тип келькоута не даст большого эффекта, если для изготовления основного ламината будет применяться обычная, а не самозатухающая смола. Скорость горения ламината, выполненного на самозатухающих смолах, практически не зависит от того, обычный гелькоут или огнестойкий. Главная причина, почему такие гелькоуты производятся — необходимость соответствия изделий военным и прочим государственным нормам.

Существует также специальный тип гелькоутов, применяемых при изготовлении оснастки типа болванов или матриц. Это особые составы, обладающие необходимыми характеристиками именно для такой сферы применения и в любительской практике с использованием болвана им вряд ли найдется место.

Как видите, выбор гелькоутов широк и многообразен. Если вы считаете, что при постройке может возникнуть необходимость в их применении, рекомендуем обратиться за консультациями к одному из производителей, специализирующихся в этой области.

СХЕМА РАБОТЫ С ПОЛИЭФИРНОЙ СМОЛОЙ

До настоящего момента мы много говорили о смолах, их типах, характеристиках и прочих сопутствующих моментах. Но наверняка найдется много людей, которые никогда в жизни с ними не встречались или по крайней мере не имели возможности с ними поработать. Эта глава предназначена именно для них. Мы опишем , как все должно происходить и чего при этом можно ожидать. Также дадим некоторые советы по решению ряда проблем и безопасной работе с полиэфирной смолой.

Для начала давайте избавимся от всякого рода мрачных предчувствий. Я считаю, что абсолютно любой человек без особых усилий может научиться работе со смолами и быстро приобрести необходимые навыки. В конце концов, одной из главных причин распространения стеклопластика является возможность его производства посредством так называемой «неквалифицированной рабочей силы». Уже один этот факт делает стеклопластик идеальным материалом для новичка. Несмотря на то, что при этом возможны ошибки, при соблюдении аккуратности и организованности 90% из них поправимы или их можно избежать без ущерба качеству окончательного изделия. Работа со стеклопластиком может быть грязной, но она совершенно точно не требует каких-либо особых умений — необходима лишь некоторая предварительная информированность, чему и служит данная книга.

Полиэфирные смолы могут отверждаться путем введения катализатора, который обеспечивает выделение тепла внутри смолы, либо путем применения внешних источников тепловой энергии . Последний метод слишком дорог и труден в реализации для такого большого изделия, как корпус лодки. Поэтому, чтобы отправить нашу первую порцию смолы в свой последний путь, мы воспользуемся МЭК-пероксидом.

В большинстве случаев производитель смолы прилагает к ней небольшой график, по которому можно определить, сколько катализатора необходимо добавить в смолу в зависимости от окружающей температуры. По крайней мере вначале следуйте этим указаниям. По мере того как вы будете набираться опыта в работе со смолой и поймете зависимость отверждения от катализатора и температуры, вы наверняка сможете достаточно точно оценивать необходимое количество катализатора «на глаз».

Поскольку за ограниченное время можно выработать определенное количество смолы, катализатор вводится только в необходимый для выполнения части работы объем смолы. Если вы не можете определить этого количества, начните с литра или менее и в дальнейшем, если чувствуете в себе возможность с этим справиться, понемногу увеличивайте объем. Катализатор является крайне опасным веществом для органов зрения, поэтому при введении катализатора в смолу рекомендуется обязательно использовать средства защиты (хотя на производстве их можно наблюдать нечасто, при том что им об этом прекрасно известно).

Добавьте в смолу катализатор и тщательно размешайте его со смолой. Не стоит перемешивать смолу излишне энергично, т.к. при этом в нее попадает множество воздушных пузырьков, которые затем надо будет как-то изгнать из ламината. Небольшое их количество серьезной проблемы не представляет, поэтому не стоит слишком переживать по этому поводу. Перемешивать смолу следует около двух минут, чтобы гарантировать равномерное распределение катализатора (в противном случае отверждение будет неоднородным).

По истечение некоторого времени после перемешивания катализатора со смолой вам может показаться, как будто абсолютно ничего не происходит. Только не добавляйте при этом еще катализатора и не отвлекайтесь на перекуры и разговоры. Как только катализатор попал в смолу, ничто уже не может остановить ее отверждения.

Немного погодя смола с катализатором начнет менять свой цвет с голубоватого или розоватого (в зависимости от марки смолы оттенок может быть разным) на более мутный и коричневатый. Естественно, к моменту, когда это произойдет, большая часть замешанной смолы должна уже быть на изделии. Если вы еще не успели этого сделать, то емкость со смолой может начать слегка разогреваться. Это говорит о том, что идет экзотермическая реакция и надо поторопиться использовать смолу по назначению. Реакцию можно несколько замедлить, поместив емкость со смолой в ведро с холодной водой или льдом, в холодильник (в котором нет продуктов), либо вылив смолу в плоскую неглубокую посуду. Если ни одна из этих мер не принята, или смола не использована, вы заметите, как она начнет походить на плохо застывший в холодильнике желатиновый десерт.

Время, прошедшее с момента введения катализатора до этого желеобразного состояния, называется временем жизнеспособности смолы или временем, в течение которого смола может быть использована. Время жизнеспособности смолы, как мы уже ранее говорили, зависит от ряда факторов, включающих количество катализатора, окружающую температуру, свежесть смолы и т.п. «Нормальная» (если можно так выразиться) жизнеспособность смолы может составлять 15-60 минут, но чаще рабочий диапазон лежит в промежутке 30-45 минут. На практике возможна ситуация, когда вам хотелось бы, чтобы смола встала за 15 минут и менее, но следует иметь в виду, что при таком ускоренном отверждении смола может получить чрезмерную усадку и разогрев и большинство окажется просто не в состоянии работать со смолой подобными темпами.

Термин «время жизнеспособности» имеет родственное отношение к «времени желатинизации». Разница между ними в том, что время желатинизации соответствует времени в вашем распоряжении, в течение которого можно работать со смолой после ее нанесения на поверхность, т.к. при распределении смолы по большой площади ее температура автоматически падает. Именно поэтому время желатинизации смолы несколько превышает время жизнеспособности. Мораль этого повествования в том, что для минимизации отходов и увеличения времени работы со смолой смола должна быть нанесена на рабочую поверхность как можно скорее.

А теперь представим себе ситуацию, когда смола в емкости начала желатинизацию, а у вас нет возможности всю ее использовать. Как поступить при этом ? Смолу следует выбросить ! Если смола достигла этого состояния, далее ее использовать уже нельзя, но и просто выбрасывать в мусорное ведро ее также не следует. Почему ? Может оказаться так, что выделяющейся при экзотермической реакции теплоты хватит для возникновения пожара. Как уже отмечалось ранее, смола в виде сконцентрированной массы разогревается значительно сильнее чем та же смола, но распределенная по поверхности и если масса этого концентрата достаточно большая, а окружающая температура высока, или катализатора слишком много — тогда есть все шансы для ее возгорания .Поэтому, когда вы выбрасываете рабочую смолу, которую не в состоянии использовать, распределяйте ее по большой площади, чтобы не дать возможности разогреться и делайте это а таком месте, где рядом нет горючих материалов.

На всем протяжении работы со смолой — от добавления катализатора и до превращения смолы в твердое состояние — катализацию, превращение в гель и отверждение можно контролировать по небольшим переменам в цвете смолы. Помните, что смолу не следует отверждать слишком быстро, т.к. это приведет к чрезмерной усадке изделия, деформациям, концентрациям напряжений и усложнит съем с болвана. Но главное — не забывайте обязательно вводить катализатор в каждую очередную порцию смолы.

Если это возможно, работайте при оптимальной температуре. Хотя формовать стеклопластик можно и при температурах ниже +15 С и выше +40 С, диапазон +20-30 градусов является идеальным, при условии что этому не сопутствует прямой солнечный свет или дождь.

Когда смола нанесена на рабочую поверхность, распределена по ней и начинает желатинизацию — не следует далее ее «беспокоить» до самой полимеризации (существуют исключения из правила, о которых мы поговорим в следующих главах). Под временем полимеризации мы понимаем время, необходимое смоле для превращения в достаточно твердое состояние, чтобы с ней можно было проводить дальнейшие работы.

При том, что отверждение смолы в сильной степени зависит от температуры, в среднем оно занимает 1-3 часа. Приемлем и несколько больший период, при условии что не существует риска резкого повышения влажности (ливень, туман и т.п.) в непосредственной близости , что может отрицательно сказаться на свойствах смолы и стеклопластика.

Хотим заметить, что время полимеризации вовсе не означает полного отверждения смолы, этот процесс занимает гораздо дольшее время — возможно, несколько дней. В течение всего этого периода стеклопластиковая конструкция сохраняет некоторую степень гибкости и если проектная форма конечного изделия имеет значение (как в случае корпуса лодки), необходимо принять соответствующие меры для избежания деформации до приобретения им необходимой жесткости. Либо обеспечить эту жесткость установкой соответствующих конструктивных элементов до извлечения из матрицы или снятия с болвана. Стеклопластиковое изделие будет продолжать отверждение и набирать прочность достаточно длительное время после своего изготовления. Указать точные сроки этого процесса невозможно, однако неделя и более представляется обычным делом.

Как определить — а сколько времени займет отверждение смолы в вашем случае ? Есть ли способ оценить, в достаточной ли оно степени и каково его качество ? В условиях производства для этих целей часто используется измеритель твердости поверхности BARCOL, им можно проверять степень полимеризации смолы после укладки каждого из слоев. Если вдруг вы располагаете подобным прибором, примите к сведению, что показание в 40 единиц является стандартным значением. Другой тест, при помощи которого определяют степень отверждения смолы — реакция на ацетон. Этот тест по силам выполнить каждому. На поверхность застывшей смолы выливается небольшое количество ацетона и начинает растираться до полного его испарения. Если поверхность после этого становится мягкой или липкой — отверждение смолы неполное (хотя твердости может быть и достаточно для ведения дальнейших работ). Как правило, состояние отверждения видно без этого и потребность в подобных пробах в любительской практике возникает редко.

ПОЛИЭФИРНАЯ СМОЛА И БЕЗОПАСНОСТЬ

Теперь, когда вам известно, что происходит со смолой при введении в нее катализатора и как с ней работать — давайте поговорим о том, как с ней обращаться в смысле безопасности. Для начала следует знать, что реально и достоверно никому не известно, какие опасности влечет за собой продолжительная работа с пролиэфирной смолой. В основном это объясняется тем, что период ее применения не настолько велик, чтобы в полной мере оценить наносимый здоровью ущерб. Однако мы совершенно точно знаем, что работа с полиэфирной смолой не ведет к продлеванию жизни и что многие из ее компонентов крайне опасны, если обращаться с ними без надлежащего уважения и осторожности.

К примеру, стирол (основной компонент смолы и составляющая раствора воска) раздражает глаза и органы дыхания при концентрации в 400 ppm (частиц на миллион) и более, а концентрация в 10 000 ppm может оказаться смертельной. Однако на практике концентрация паров стирола (запах, который вы ощущаете при вдыхании «аромата» смолы) редко превышает 200 ppm. При более высоких концентрациях пары стирола вызывают анестетический и наркотический эффект (как будто вы слегка пьяны). Если подобная передозировка произойдет, пострадавшего следует вывести из опасной зоны в хорошо проветриваемое место , при необходимости использовать кислородную маску и искусственное дыхание, следить за тем, чтобы ему не было холодно (но и не жарко).

Как уже говорилось, при работе со смолой и в особенности с катализатором, МЭК-пероксидом, крайне важна защита для глаз. Если они попадут в глаза, их следует немедленно промыть большим количеством воды в течение 15 минут и немедленно обратиться за врачебной помощью. Это особенно важно, если имел место контакт с одним катализатором. Это вещество вызывает тяжелые ожоги кожи и может привести к необратимой потере зрения, поэтому следует избегать его попадания в глаза и на слизистые оболочки. При попадании внутрь следует дать пострадавшему большое количество воды или молока, немедленно обратиться за врачебной помощью, сообщив медикам название вещества. Детей и прочих лиц, не знакомых с полиэфирными смолами, нельзя вообще подпускать к ним, в особенности без присмотра.

Если смола попала на одежду (тем более в большом количестве) — одежду, вне всякого сомнения, можно выбросить. Впитавшую смолу одежду надо немедленно снять, а участок на теле, куда она попала, промыть водой с мылом. Выпускается большой ассортимент чистящих средств для работы с полиэфирными смолами, их также можно применять вместо мыла.

При проливании смолы на землю или пол убедитесь в том, что рядом отсутствуют любые источники воспламенения (им может быть даже водонагреватель или иной бытовой прибор). Обеспечьте вентиляцию, помня о том, что пары стирола тяжелее воздуха и оседают вниз. Соберите пролитую смолу в емкость лопаткой или засыпав предварительно каким-либо инертным материалом типа песка или вермикулита. Пропавшая смола выбрасывается в закрытый несгораемый контейнер, а место, где она была разлита, моется раствором фосфата натрия в воде. Смола, катализатор и восковой раствор являются горючими жидкостями и при обращении с ними надо избегать источников нагрева, открытого пламени и курения. Не держите катализатор в местах, где температура может превышать +40 С и не разбавляйте МЭК-пероксид ацетоном. Его также нельзя пересылать авиапочтой, т.к. он классифицируется как «органический пероксид» и запрещен к транспортировке на борту коммерческих авиалиний. МЭК-пероксид окисляет многие металлы, включая сталь, медь и латунь.

Если возгорание все-таки случится, не пытайтесь гасить пламя водой. Тушите его теми же средствами, которые применяются для горящего масла или бензина, т.е. пенными, углекислотными и порошковыми огнетушителями или песком. Учтите, что в условиях закрытых контейнеров и повышенной температуры стирол полимеризуется очень быстро, поэтому во избежание их повреждения держите источники тепла подальше.

Не подвергайте катализаторы воздействию любых видов нагрева или солнечного света. Категорически запрещается разбавлять их ацетоном, т.к. это может привести к взрыву. При нанесении полиэфирной смолы краскопультом он должен быть заземлен, а все его детали со следами износа подлежат замене до начала работы. Все оборудование для распыления смолы должно иметь взрывозащищенное исполнение.

И напоследок — работая с полиэфирными смолами, соблюдайте осторожность и относитесь к ним с уважением, которого они заслуживают. Соблюдая это условие, вы минимизируете число возможных проблем.


По материалам: «Полимерные композиционные материалы» Бобович Б.Б.,
Информационно-коммуникационная система профессионального образования

стеклопластикиБольшую группу композиционных полимерных материалов составляют армированные пластики, в которых в качестве полимерной матрицы применяются различные термореактивные и термопластичные полимеры, а для арматуры используются волокнистые и листовые материалы из стекла, полимеров, базальта, углерода и других материалов.

Общая характеристика армированных пластиков

Армированные пластики широко применяются в авиационно-космической технике, различных отраслях машиностроения, строительстве, при изготовлении аттракционов, водных горок, бассейнов, спортинвентаря и других товаров народного потребления.

К достоинствам армированных пластиков относятся:

— высокая прочность при низкой плотности, что позволяет заменять сталь в конструкциях машин и механизмов;

— устойчивость к воздействию агрессивных сред, что обеспечивает изделиям из них длительные сроки эксплуатации без применения защитных покрытий;

— низкая материалоемкость изготовленных из них изделий, что позволяет снизить массу и расходы на эксплуатацию мобильной техники;

— высокая технологичность, заключающаяся в возможности изготовления крупногабаритных изделий сложной формы без дорогостоящей технологической оснастки и оборудования;

— возможность регулирования в широких пределах тепло- и электропроводности, радио- и светопрозрачности в зависимости от типа применяемых армирующих волокон;

— возможность ремонта в «полевых» условиях без применения специального оборудования;

— низкие капитальные затраты на организацию производства изделий из армированных пластиков;

— работоспособность в широком диапазоне температур и напряжений.

Наибольшее распространение получили армированные полимерные композиты с использованием в качестве арматуры текстильных материалов на основе стекловолокна, что связано с его доступностью, низкой стоимостью и высокими прочностными свойствами.

Все необходимое сырье для производства стеклопластиков появилось еще в 30-х годах прошлого века. Массовое производство стеклянных нитей и пряжи стало возможным в 1932 году, когда была разработана технология производства стеклянных волокон из расплава. Подходящие для производства стеклопластиков связующие также появились в тридцатых годах ХХ столетия, когда в США была разработана технология изготовления полиэфирных смол. Чуть позже появились и перекисные отверждающие системы для этих смол. Принципиально с тех пор сырьевая база не изменилась, хотя, конечно, до сих пор проводится ее совершенствование и создание и новых смол, и новых отвердителей, и новых стекломатериалов.

В 40-х годах прошлого века появилась и острая нужда в новых материалах, способных удовлетворить требования создателей морской и авиационной военной техники.

Первым массовым потребителем полиэфирных стеклопластиков в гражданских отраслях промышленности стало производство судов. В 60-х годах прошлого века этот сектор стал крупнейшим потребителем армированных композитов, а чуть позже в лидеры вышла автомобильная промышленность благодаря крупносерийности своего производства.

Увеличение требований к армированным материалам привело к использованию в полимерных композитах сначала углеродных, а позднее органических высокомодульных волокон типа СВМ и кевлар. Этого требовало создание современной ракетно-космической и авиационной техники, необходимость снижения ее массы и одновременного повышения прочности и выносливости, а также обеспечения специальных технических свойств.

Наряду с разработкой новых материалов совершенствовались и технологии изготовления изделий из армированных композиционных материалов. Если первые изделия из стеклопластиков производились путем укладки на болванку стеклоткани, пропитанной композицией, содержащей смолу и отвердитель, то позже появились оборудование и технологии, позволяющие непрерывно напылять на технологическую оснастку все компоненты композиции — и рубленое стекловолокно, и смолу, и отвердитель — одновременно в заданном соотношении. Это, конечно, резко повысило производительность труда, улучшило санитарно-гигиенические условия, снизило себестоимость продукции из стеклопластика и позволило перейти к серийному производству крупногабаритных изделий из них.

Позднее были разработаны еще более совершенные, высокопроизводительные технологии, позволяющие получать изделия с высокими эстетическими свойствами и меньшими отходами производства способами намотки, пултрузии, впрыска в закрытую форму и др.

Таким образом, потребности промышленности в более совершенных материалах и технологиях с одной стороны, и возможности, появившиеся при создании новых сырьевых материалов и оборудования с другой стороны, способствовали расширению применения армированных пластиков в различных отраслях экономики.

Структура и свойства армированных пластиков

К армированным композитам принято относить материалы искусственного происхождения сложного состава, имеющие не менее двух непрерывных фаз с общей границей раздела. Одна из фаз называется матрицей, она отвечает за форму изделия, устойчивость композита к воздействию различных агрессивных сред, тепло- и морозостойкость, ударную прочность и другие свойства.

Не следует путать связующее с матрицей. Связующее — это полимерная основа, из которой после соответствующей обработки и образуется матрица. Важные характеристики связующего — технологические: вязкость, смачивающая способность, живучесть и др.

Второй обязательной фазой композиционного материала является армирующий наполнитель, частицы которого должны иметь длину не менее критической lх, при которой может быть реализована прочность волокна. Критическая длина волокна зависит от его диаметра d, прочности при разрыве sв, прочности при сдвиге tсдв. на границе раздела «волокно — матрица» и может быть рассчитана по уравнению:

Большую роль в формировании свойств композиционного материала играет межфазный слой на границе раздела матрицы и армирующей фазы. Подсчитано, что площадь контакта между ними в 1 мм2 композита с содержанием волокна 50 % по объему составляет 450-600 мм3.

Межфазный слой имеет и состав, и структуру, отличающиеся от состава и строения матрицы, поскольку помимо материала самой матрицы он включает в себя и некоторые продукты, входящие в состав армирующего наполнителя. Межфазный слой неоднороден по составу, а его толщину точно определить нельзя, поскольку состав и структура граничного слоя изменяются не скачкообразно. Тем не менее, толщину межфазного слоя определяют экспериментально и расчетным путем, принимая за нее такую его протяженность, на которой его состав и свойства изменяются по отношению к матрице и армирующему волокну в заданных пределах.

Толщина межфазного слоя у различных материалов колеблется в значительных пределах: от 0,01 до 5 мкм. Его роль в формировании свойств полимерного композита велика, а потому изучению и управлению процессами формирования межфазного слоя придается большое значение.

Широкому использованию армированных пластиков способствуют их высокие прочностные свойства.

Из табл.1 видно, что по удельным прочностным свойствам армированные полимерные композиты намного превосходят металлические сплавы.

В общем виде свойства армированных пластиков зависят от многих факторов, в том числе:

— природы, структуры и предыстории армирующего наполнителя;

— химической природы полимерной матрицы;

— соотношения содержания полимера и армирующего наполнителя;

— природы и содержания других компонентов;

— технологии изготовления.

Современная наука позволяет конструировать армированные композиционные пластики, изменяя их состав и структуру, добиваясь максимально полного удовлетворения предъявляемых к ним требований.

Следует различать конструирование материалов и конструирование изделий, хотя применительно к армированным композитам, как правило, изготовление изделия и материала происходят одновременно. Но и в этом случае структура материала и структура изделия — различные понятия, хотя их формирование происходит одновременно.

Таблица 1. Свойства конструкционных материалов

Свойства конструкционных материалов

* (1:0) и (2:1) — соотношение содержания волокон вдоль и поперек Классификация армированных пластиков

К признакам классификации армированных пластиков относятся:

— химическая природа связующего; оно может быть термореактивным или термопластичным, от чего зависят многие эксплуатационные свойства армированных пластиков, например, отношение к растворителям, теплостойкость и другие, а также возможность рационального использования отходов их производства и потребления;

— тип армирующего волокна; широко используются стеклянные, угольные, органические, базальтовые, борные и другие волокна;

— форма армирующих элементов; они могут быть в виде волокон, нитей, жгутов, матов, тканей, пленок, лент;

— схемы армирования, которые бывают одно-, двух- и трехмерные; возможно также хаотичное армирование дискретными волокнами;

— степень армирования; в зависимости от типа армирующего материала она может быть низкой, высокой и предельной. При низкой степени армирования содержание волокон не превышает 40 % по массе; при высокой степени армирования содержание волокон может достигать 75-92 % по объему. Предельное армирование осуществляется вообще без связующего путем оплавления части полимерных волокон, содержание которых в исходной композиции составляет 100 % (так называемое «перепрофилирование волокон»);

— назначение; по этому признаку армированные полимерные композиты подразделяют на высокопрочные, морозостойкие, теплостойкие, трудногорючие, электротехнические, износостойкие и др.;

— технология производства; армированные полимерные материалы получают литьем под давлением, экструзией, намоткой, напылением, пултрузией, выкладкой и другими способами.

Связующие для армированных полимерных материалов

Основные требования к связующим для производства армированных полимерных композитов состоят в следующем:

— хорошее смачивание армирующего наполнителя;

— высокая адгезия к армирующему наполнителю;

— низкая усадка при отверждении;

— высокая прочность в отвержденном состоянии;

— регулируемое во времени отверждение при комнатной температуре;

— отсутствие летучих компонентов;

— длительная стабильность при хранении;

— высокие эксплуатационные характеристики (теплостойкость, светостойкость, водостойкость, химическая стойкость и др.);

— низкая стоимость;

— возможность простой утилизации отходов.

В качестве связующих материалов полимерных армированных пластмасс используют термопласты и реактопласты.

Термопласты — полиамиды, полиимиды, полипропилен, полисульфон и другие — обладают высокой вязкостью (при комнатной температуре являются твердыми материалами). Пропитка армирующих волокнистых материалов термопластичными связующими возможна только после перевода их в вязкотекучее состояние.

Вместе с тем, использование термопластов в качестве связующих при производстве армированных пластиков имеет и важные преимущества. Во-первых, при их использовании практически не выделяются в рабочую зону токсичные газообразные продукты, как это имеет место при использовании олигомерных связующих. А во-вторых, отходы производства армированных пластиков на основе термопластов легко утилизируются, так же как и другие термопластичные полимеры, поскольку их макромолекулы не связаны между собой химическими связями.

Особый интерес имеет возможность получения на основе термопластов «предельноармированных» пластиков с содержанием армирующих волокон до 100 %. Такие армированные композиты получают путем оплавления при нагревании части полимерных волокон.

Армированные композиты на основе термопластичной матрицы отличаются низкими остаточными напряжениями, высокой ударной вязкостью (более 600 кДж/м2), морозо- и теплостойкостью (их эксплуатация возможна в интервале температур от -60 до +250 °С) и другими важными рабочими характеристиками.

Заготовки для изготовления изделий из армированных термопластов имеют практически неограниченный срок хранения, что упрощает организацию технологического процесса производства изделий из них.

Одной из перспективных технологий производства армированных пластиков на основе термопластов является производство тканых полотен из смеси волокон, часть из которых при формовании изделия расплавляется и связывает остальные нерасплавленные волокна. Последние играют роль армирующего наполнителя. Полуфабрикаты из таких смесовых тканей обладают равномерностью структуры и постоянством сырьевого состава. Производство изделий из смесовых тканей легко механизируется и может быть осуществлено на обычных гидравлических прессах.

Разрабатываемые в последнее время технологии производства армированных композиционных материалов на основе термопластичных связующих, а также технологии формования изделий из смесовых текстильных полуфабрикатов создают предпосылки для более широкого их использования при производстве продукции массового спроса.

В настоящее время более широко в производстве армированных пластмасс используются олигомеры, которые после отверждения в присутствии отвердителя превращаются в реактопласты. Это объясняется их лучшей технологичностью, т.к. во время пропитки они являются вязкими жидкостями. В качестве олигомеров для получения связующих применяют полиэфирные, эпоксидные, фенолформальдегидные, кремнийорганические и другие смолы.

Свойства отвержденных полимерных связующих приведены в табл. 2.

Таблица 2. Свойства отвержденных связующих для производства армированных пластиков
Свойства отвержденных связующих для производства армированных пластиков

В композицию, используемую для пропитки, помимо связующего, входят отвердитель, ускоритель отверждения, пигменты и другие добавки, регулирующие свойства смолы и, в конечном счете, будущего готового продукта — стеклопластика. Сравнительные свойства стеклопластиков, изготовленных с применением в качестве связующего олигомерных смол, приведены в табл. 3.

Таблица 3. Свойства стеклопластиков на основе некоторых связующих

Свойства стеклопластиков на основе некоторых связующих

Как видно из приведенных в табл. 3 данных, стеклопластики на основе эпоксидных смол обладают более высокой прочностью при всех видах нагружения. Кроме того, они имеют более высокую выносливость при различных нагрузках. По теплостойкости их превосходят материалы на основе кремнийорганических и фенолформальдегидных смол.

Наибольшее применение в качестве связующего армированных пластиков находят ненасыщенные полиэфирные смолы благодаря низкой стоимости и высокой технологичности.

Роль матрицы, сформированной из связующего, чрезвычайно велика. Благодаря ее непрерывности и адгезионной связи с наполнителем прилагаемые к композиту напряжения распределяются по всему объему материала и воспринимаются высокопрочными волокнами. В то же время именно матрица определяет такие важнейшие свойства композита, как тепло-, огне-, биостойкость, устойчивость к УФ, радиационному и химическому воздействию.

Требования к физико-механическим свойствам связующих определяются условиями эксплуатации изделий из композитов. Весьма важны и их технологические свойства, от которых зависит возможность производства композиционного материала. Так, например, вязкость олигомера оказывает непосредственное влияние на возможность пропитки им наполнителя, а адгезионные свойства влияют на прочность связи между наполнителем и матрицей. Температурный коэффициент линейного расширения, который, у матрицы может быть в десятки раз больше, чем у волокна, влияет на возможность расслоения композита уже при изготовлении изделия, поскольку отверждение большинства используемых полимеров происходит с выделением тепла.

Анализируя условия эксплуатации изделий из композитов, а также технологии их формования, не трудно представить, сколь многообразны, а порой и противоречивы требования к свойствам связующих, используемых для формования матриц. Скажем, требование к такому важному свойству матрицы, как пластичность, противоречиво. С одной стороны повышение пластичности способствует снижению хрупкости материала. В то же время высокая пластичность матрицы не только отрицательно влияет на прочностные свойства композита, но и снижает теплостойкость и другие характеристики материала. Поэтому связующее должно обладать не просто высокой или низкой пластичностью, а иметь значение этого показателя в узких, оптимальных для конкретного композиционного материала, пределах. Таким образом, важна оптимизация свойств полимерного связующего.

Улучшение свойств матриц достигается путем создания новых полимеров, изменения структуры существующих, введением различных добавок. В частности, повышение теплостойкости композитов, которая характеризуется способностью материала сохранять структуру при нагревании, достигается использованием полимеров с высокой жесткостью цепей и оптимальным с точки зрения переработки межмолекулярным взаимодействием.

Термостойкость, т.е. способность материала сохранять химическую структуру при нагревании, достигается при использовании полимеров с прочными химическими связями.

Примером того, как достигаются заданные свойства полимеров различными путями, является повышение их огнестойкости. С этой целью используют специальные полимеры, устойчивые к термоокислительной деструкции, совершенствуют структуру готового материала, исключая пористость и рыхлость, вводят в полимерную композицию различные антипирены, подавляющие горение.

Такой важный показатель для многих областей применения композиционных материалов, как водостойкость, также зависит от химической и физической структуры связующего, а также от физического строения матрицы.

Поэтому, при создании композитов необходимо учитывать все физико-механические и технологические свойства связующего, а также все виды взаимодействия между различными составляющими композита, которые могут изменить характеристики материала в целом.

Принимая во внимание возрастающие требования к композиционным материалам, связанные с ужесточением условий их работы, в последние годы проводятся исследования по созданию полимерных связующих для матриц, обеспечивающих высокие прочностные свойства (до 250 МПа), теплостойкость (до 300 °С), низкое водопоглощение (до 1 %). Использование таких связующих хотя и позволяет существенно улучшить эксплуатационные характеристики композиционных материалов, но создает значительные трудности для реализации технологий производства из них изделий, поскольку температура их переработки достигает 350 °С.

Виды армирующих наполнителей

Несмотря на то, что теоретическая прочность полимеров составляет ~19000 МПа, реальная их прочность не превышает 100-200 МПа, что связано с большим количеством дефектов в их структуре. В то же время прочность некоторых, в том числе высокомодульных полимерных, стеклянных, углеродных и других волокон равна 4000-5000 МПа, а некоторых еще выше. Поэтому для производства высокопрочных полимерных композитов широко используются армирующие органические и неорганические волокна, а также текстильные материалы на их основе.

Химическая природа волокон, используемых для производства армированных пластиков, многообразна. Это могут быть полимерные материалы, стекло различного состава, углерод, базальт и др. Прочностные свойства некоторых видов волокон приведены в табл. 4.

Таблица 4. Свойства армирующих волокон

Свойства армирующих волокон

Как видно из данных табл. 4, свойства волокнистых армирующих материалов различной химической природы принципиально отличаются друг от друга. Кроме того, свойства армирующего материала одной природы могут отличаться на десятки процентов только от того, какова его предыстория: температура и продолжительность сушки, длительность контакта с кислородом воздуха, условия обжига замасливателя и нанесения аппрета, его природа и др.

Наиболее широко для получения полимерных композиционных материалов используются армирующие наполнители на основе стеклянного волокна. Химический состав стекла влияет на свойства волокна и в конечном итоге на свойства композиционных материалов. Основу стекол, используемых для производства волокон, составляют оксиды кремния, алюминия, магния, кальция. Кроме того, для достижения специальных свойств в стеклянную массу добавляют в небольших количествах оксиды бора, натрия, циркония и др.

Выбор стекловолокна определяется назначением стеклопластика и технологией его переработки. При изготовлении стеклопластиков общего назначения на основе полиэфирных смол используются армирующие наполнители из стекловолокна типа Е, имеющего следующие характеристики: плотность — 2,58 г/см3, температуру плавления — 846 °С, прочность при разрыве — 3445 МПа, модуль упругости — 72 ГПа и удлинение при разрыве — 4,8 %.

Как отмечено выше, структура армирующих материалов многообразна. Для армирования стеклопластиков применяются однонаправленные непрерывные наполнители в виде нитей и жгутов (ровингов), ткани и сетки, нетканые материалы в виде матов, трикотажные полотна, рубленые волокна и др.

Широкое применение для производства стеклопластиков находит ровинг, представляющий собой непрерывную прядь из многих волокон.

Ровинги используются при производстве тканей и холстов, при изготовлении стеклопластиков путем намотки и напыления (с предварительным измельчением) и для других целей. В зависимости от назначения используются ровинги с различным содержанием элементарных волокон в комплексной нити.

Структура ткани определяется видом переплетения нитей. При выборе ткани руководствуются назначением стеклопластика. Различают полотняное, сетчатое, саржевое, сатиновое и другие переплетения.

Для конструкционных стеклопластиков используют стеклоткани сатинового или саржевого переплетения из крученых комплексных нитей или даже из ровинга. Стеклопластики электротехнического или теплоизоляционного назначения изготавливают, используя ткани полотняного переплетения.

Стекломаты из рубленых жгутов представляют собой наиболее распространенный тип волокнистого наполнителя, который особенно часто используется при контактном формовании. В стекломате хаотически распределены рубленые пряди, состоящие из элементарных волокон и нитей длиной около 50 мм, соединенных друг с другом специальной связкой. В зависимости от назначения мата применяются связки, обладающие разной растворимостью в различных смолах. По мере того, как стекломат смачивается смолой, связка растворяется в ней, обеспечивая свободное перемещение пучка волокон, что облегчает распределение материала по поверхности формы. Содержание армирующего наполнителя в стеклопластике при использовании стекломата ниже, чем при применении тканых материалов.

Содержание волокна оказывает решающее влияние на свойства стеклопластика. На рис. 1 показано изменение характеристик материала в зависимости от содержания в нем стекловолокна.

Рис. 1. Влияние содержания волокна на разрушающее напряжение при растяжении (sр), изгибе (sи) и ударную вязкость (а)

Влияние содержания волокна на разрушающее напряжение при растяжении (sр), изгибе (sи) и ударную вязкость (а)

Стекловолокно при производстве покрывается замасливателем, который соединяет элементарные волокна в первичную нить, предотвращая их слипание между собой и облегчая размотку и кручение нитей при производстве из них жгутов. Важная роль замасливателя заключается и в том, что он защищает волокна от истирания и разрушения в процессе производства текстильных материалов из нитей, а также препятствует накоплению зарядов статического электричества.

После производства текстильного материала и выполнения своих функций замасливатель удаляют, т.к. он мешает пропитке стекловолокнистого наполнителя полимерным связующим. Удаление замасливателя производят путем выжигания при термической обработке при температуре около 800 °С или путем растворения в соответствующем замасливателю растворителе.

Для улучшения взаимосвязи связующего со стеклонаполнителем на поверхность последнего наносят аппреты, которые имеют функциональные группы. Благодаря им аппреты способны взаимодействовать и со связующим, и со стекловолокном. Роль таких веществ выполняют кремний- и металлоорганические соединения с аминными, гидроксильными или эпоксидными группами.

Наиболее оптимально аппреты вводить в состав замасливателя, в этом случае исключается операция его удаления, что позволяет сократить время изготовления материала и исключить снижение прочностных свойств стеклонаполнителя при удалении замасливателя.

Прочность стеклянных волокон в большой степени зависит от влаги, адсорбированной на их поверхности. Адсорбированная влага снижает поверхностную энергию волокон, вызывает набухание поверхностных слоев, приводит к развитию микротрещин, в конечном счете, снижая прочность волокон. Сушка и удаление влаги с поверхности волокон позволяет повысить их прочность, но полной десорбции поверхностной влаги не удается добиться даже при длительном и глубоком вакууме.

Применение углеродных волокон для получения полимерных композиционных материалов позволило решить ряд новых технических задач, что связано с уникальностью свойств армирующих материалов на основе углерода. Так, углеродные волокна обладают высокими прочностными характеристиками, низкой плотностью, тепло- и электропроводностью, химической стойкостью, низким температурным коэффициентом линейного расширения, высокой устойчивостью к ионизирующему излучению, низким коэффициентом трения и др.

Благодаря этому армированные углеродными волокнами полимеры (углепластики) нашли применение в ракетостроении и химическом машиностроении, авиационной и космической технике, в производстве спортивного инвентаря и товаров ширпотреба. Лучшие марки отечественного углеродного волокна имеют прочность при растяжении свыше 4,0 ГПа и модуль упругости около 240 ГПа при плотности 1,75 г/см3, что выгодно отличает их от других армирующих наполнителей. Известны углеродные высокомодульные волокна со значениями этих характеристик 3,3 ГПа, 500 ГПа и 1,95 г/см3 соответственно.

Углеродное волокно состоит из тончайших фибрилл, диаметр которых составляет 1-2 нанометра. Волокно имеет полую замкнутую структуру, поры занимают до 30 % объема волокна.

Получают углеродные волокна из полимерных нитей и волокон. Технология производства сложна и многостадийна. Процесс проводится при высоких температурах. Основная цель при получении углеродных волокон заключается в карбонизации и графитизации используемых высокомолекулярных продуктов. Большое влияние на качество углеродного волокна оказывает подготовка исходных полимерных волокон.

При карбонизации из полимерных волокон удаляются все химические элементы, кроме углерода. Продуктом карбонизации является твердый углеродный материал с поликристаллической структурой. Процесс проводится в отсутствие кислорода, т.е. в инертной или даже восстановительной среде.

На стадии графитизации, которая проводится при 2000-2400 °С, структура волокон упорядочивается и приобретает многослойность, характерную для гексагональной структуры монокристалла графита.

Для производства углепластиков используют дискретные углеродные волокна, углеродные нити, ленты и тканые материалы.

В зависимости от вида армирующего углеродного материала углепластики подразделяются на углеволокниты, углетекстолиты и углепрессволокниты. Углеволокниты изготавливаются с применением непрерывных углеродных нитей и жгутов. Углетекстолиты изготавливают с использованием тканей или тканых лент различного переплетения. Углепрессволокниты производят на основе дискретных волокон.

Свойства углепластиков, так же как и стеклопластиков, зависят от характеристик армирующих материалов, вида и текстуры волокна, степени наполнения, свойств полимерной матрицы и т.д.

Оптимальное содержание углеродных армирующих материалов в углепластике составляет 52-60 % по массе в зависимости от его вида.

Отличительные особенности углепластиков, которыми они обладают благодаря углеродным волокнам, — высокая прочность при чрезвычайно высоком модуле упругости и низких плотности и ползучести. Кроме того, у них очень высокая теплостойкость и устойчивость к термическому старению. Они длительно (500-1000 ч) выдерживают механические напряжения при одновременном воздействии температур до 200 °С. Эти материалы обладают в 2-3 раза более высокой усталостной прочностью, чем стеклопластики.

Характерной особенностью углепластиков является высокая анизотропия всех механических и электрофизических свойств, которая в 2-3 раза выше анизотропии свойств стеклопластиков (табл. 5).

Таблица 5. Анизотропия свойств углепластиков

Анизотропия свойств углепластиков

Поэтому при проектировании структуры углепластиков и изделий из них необходимо учитывать направление (вектор) действия нагрузок при эксплуатации.

Среди недостатков углепластиков — меньшая, по сравнению с другими армированными пластиками, удельная ударная вязкость, недостаточная трещиностойкость и более высокая чувствительность к концентрации напряжения. Чередование в структуре материала армирующих наполнителей различной химической природы позволяет устранить эти недостатки. С этой целью производят комбинированные ткани на основе смесей стеклянных и углеродных волокон.

Еще одним видом армирующих наполнителей для производства полимерных композитов являются базальтовые волокна. Базальт — это природный аморфный материал вулканического происхождения, его месторождения имеются в разных странах. По химическому составу базальт близок к алюмоборосиликатному стеклу, наиболее широко используемому в производстве стеклопластиков.

Первые попытки получить волокно из расплава природного базальта были предприняты еще 1923 году в США.

Свойства базальтовых волокон не зависят от его месторождения, а технология их производства имеет большое значение.

Этот материал абсолютно безвреден и может широко использоваться, в том числе и для производства товаров широкого потребления.

Для производства базальтопластов используют волокна, нити, ленты, ткани и нетканые полотна различной структуры. Базальтопласты обладают высокой теплостойкостью, химической стойкостью, что позволяет в ряде случаев отказаться от использования асбопластиков. Базальтопласты сохраняют свои высокие диэлектрические, прочностные и фрикционные характеристики до температур 300-450 °С в зависимости от природы связующего полимера.

Интересными свойствами обладают органопласты, в которых армирующей фазой являются полимерные волокна. Свойства полимер-полимерных композитов определяются особенностями химического и физического строения полимерных волокон. Для их изготовления могут применяться карбо- и гетероцепные полимеры (полиамид, полиакрилонитрил, поливинилхлорид, полипропилен, политетрафторэтилен и др.). Однако применение этих полимеров ограничено вследствие низких прочностных свойств получаемых на их основе композитов.

Более широко для получения армирующих волокон используются высокопрочные высокомодульные полимеры. Предельно ориентированные арамидные волокна на основе ароматических полиамидов выпускаются в разных странах под различными названиями. В России — это СВМ и армос, в США — кевлар. Из таких волокон изготавливают комплексные нити, жгуты, ленты, ткани, нетканые материалы и другие армирующие наполнители.

Высокомодульные органические волокна в силу своего химического строения и надмолекулярной организации обладают чрезвычайно высокими прочностью (до 5,0-5,5 ГПа) и модулем упругости (до 160-180 ГПа), они термо- и теплостойки, устойчивы к воздействию органических растворителей, нефтепродуктов и минеральных масел.

В последние годы появились волокна из сверхвысокомолекулярного полиэтилена, которые наряду с высокой прочностью обладают отличными сопротивлением истиранию, светостойкостью, химстойкостью и низкой плотностью. Однако они уступают арамидным волокнам по показателям ползучести, теплостойкости и горючести.

Полимерная природа волокнистого наполнителя придает органопластам способность к пластической деформации без хрупкого разрушения. В органопласте, армированном полимерными волокнами, происходит диффузия полимерного связующего в поверхностные слои волокон с образованием промежуточного межфазного слоя. Благодаря этому свойства наполнителя в составе композиционного материала отличаются от свойств исходного волокна. Степень отличия зависит от термодинамической совместимости двух полимеров, из которых изготовлены матрица и волокно.

Развитый межфазный слой в органопластах на границе раздела «волокно — матрица» принципиально отличает эти материалы от угле- и стеклопластиков. Такие материалы обладают более высокими ударной вязкостью, вибропрочностью, эрозионной стойкостью и усталостной прочностью. Благодаря наличию высокоразвитого и неоднородного по толщине межфазного слоя при разрыве органопластов образуется кратероподобная поверхность разрушения (рис. 2,а). Иной характер носит картина разрушения стеклонаполненного композита: армирующее стеклянное волокно при его разрушении вырывается из полимерной матрицы (рис. 2,б).

Рис. 2. Морфология поверхностей разрушения армированных пластиков с полимерным волокном «фенилон» (а) и стекловолокном (б)

Морфология поверхностей разрушения армированных пластиков с полимерным волокном «фенилон» (а) и стекловолокном (б)

Исключительно ценными свойствами обладают керамические волокна, состоящие из оксидов металлов (металлооксидная керамика на основе оксидов Al, Zr, Be, Mg, Ti и др.) и имеющие поликристаллическое строение. Основные достоинства таких волокон — чрезвычайно высокая термостойкость, высокие прочностные свойства, износостойкость и др. Основные области применения армированных этими волокнами материалов — производство теплозащитных покрытий, материалов специального назначения для оборонной и космической техники.

Отличные результаты получены путем создания гибридных конструкционных материалов, в которых в качестве арматуры композита послойно используются полимерные и углеродные или стеклянные волокна. Использование стеклянных и углеродных волокон позволяет улучшить сопротивление материала сжатию. А наличие в таких композитах полимерных волокон делает материал устойчивым к растяжению и изгибу, к эрозии и удару.

Прекрасные результаты получены при создании комбинированных композитов, так называемых «алоров», в которых органопласты чередуются с листами алюминиевых сплавов. Такое сочетание позволяет получать материалы с чрезвычайно высокой усталостной прочностью, что проявляется в снижении скорости разрастания трещин и увеличении продолжительности их распространения в материале. По мере роста трещины в таком материале снижается скорость ее распространения вплоть до самопроизвольной остановки.

Таким образом, современная промышленность производит различные армирующие материалы для изготовления полимерных композитов. Они отличаются друг от друга не только структурой (волокна, нити, жгуты, ленты, текстильные полотна), но и химической природой (стеклянные, углеродные, базальтовые, полимерные, керамические и др.). Все это позволяет выбирать вид армирующих материалов и конструировать армированные полимерные композиционные материалы с учетом требований, предъявляемых к изделию его конструкцией, назначением и условиями эксплуатации.

Формирование межфазного слоя на границе раздела фаз

Как видно из данных, приведенных в таблицах 2 и 4, прочность армирующих волокон в несколько раз больше прочности связующих. Однако для реализации этого преимущества армирующих наполнителей перед матрицей необходимо создать прочное взаимодействие матрицы и волокна по всей площади их контакта. Добиться этого достаточно сложно, поскольку такое взаимодействие зависит от многих факторов и, в частности, от состава связующего, строения волокна, технологии изготовления композиционного материала.

Улучшению взаимодействия волокна со связующим способствуют аппреты — вещества, влияющие на структуру, свойства и протяженность межфазного слоя. Роль аппретов в формировании межфазного слоя велика: они многократно увеличивают площадь контакта волокнистого наполнителя со связующим, которая достигает 600 мм2 в 1 мм3 волокна.

Формирование межфазного слоя происходит в течение определенного времени, причем длительность процесса зависит от вязкости связующего, его молекулярной массы, физико-химических свойств, скорости его отверждения, размеров и структуры пор в волокне и, наконец, свойств аппрета. На рис. 1 показана модель межфазного слоя в армированном полимере, где dт — толщина поверхностного слоя волокна с измененной структурой. Для производства армированных пластиков с заданными свойствами необходимо целенаправленно регулировать структуру и объем граничного слоя путем правильного выбора аппрета для армирующего волокна с учетом свойств связующего.

Рис.3. Модельное представление о межфазном слое в системе полимер — твердое тело

Модельное представление о межфазном слое в системе полимер - твердое тело

Поскольку аппрет напрямую участвует в формировании межфазного слоя, считают, что в состав композита входят связующее, наполнитель и аппрет.

Аппреты должны обладать способностью:

— хорошо смачивать наполнитель;

— проникать в наполнитель и заполнять дефекты на его поверхности;

— создавать на поверхности армирующих волокон слой, совместимый с полимерным связующим;

— снижать величину остаточного напряжения в промежуточном слое, возникающего вследствие усадочных явлений в процессе отверждения связующего;

— перераспределять напряжения в матрице и переносить их на волокна при механическом воздействии на композиционный материал.

Широкое применение в качестве аппретов стеклонаполнителей нашли силаны общей формулы: (RO)3Si-R*-x, где х — функциональная группа, по которой происходит химическое взаимодействие со смолой.

Совместимость силанового аппрета со смолой зависит от типа алкильного радикала -R¢- x в аппрете.

Силановые аппреты применяются в виде спиртовых, водных и спиртово-водных растворов.

Совершенно иные приемы используются для обработки угольных или органических волокон с целью получения композитов с заданными свойствами.

Аппретирование углеродных волокон в том смысле, как это делается со стеклянными наполнителями, неприемлемо, поскольку и природа, и структура угольных волокон совершенно иные.

Для повышения прочности связи между полимерной матрицей и угольными волокнами на них наносится протекторный слой. Этот слой:

— защищает волокна от истирания при изготовлении текстильного материала;

— повышает их прочность при разрыве;

— заполняет поры и трещины в волокнах;

— создает переходный слой между ними и связующим.

Выбор мономеров для протекторного слоя производится с учетом свойств связующего, которое будет использовано при получении углепластика.

Другими способами формируется структура органопластика, поскольку механизм взаимодействия полимерных волокон с полимерным связующим принципиально отличается от механизмов, протекающих при формировании структур стекло- и углепластиков. Полимерные волокна могут набухать в связующем, а иногда и взаимодействовать с ним. Поэтому и функции защитного слоя иные. Он обязан:

— защищать полимерные волокна от диффузии в них компонентов связующего;

— защищать полимерные волокна от деструктирующего влияния компонентов связующего;

— создавать граничный слой, молекулярно или надмолекулярно связывающий полимерное волокно и связующее.

Граничные слои на поверхности органических волокон создают:

— путем прививки полимера, совместимого со связующим или химически связывающегося с ним;

— адсорбцией на поверхности волокон полимеров, совместимых с полимером матрицы;

— обработкой волокна клеями, способными адгезионно связать наполнитель со связующим.

Регулирование структуры межфазного слоя, в том числе с помощью аппрета, всегда направлено на увеличение адгезионного взаимодействия на границе раздела фаз и, в конечном счете, на повышение физико-механических свойств композиционного материала.

§ 1.31. Термические напряжения

Ввиду прочной связи между слоями однослойная стеклопластиковая конструкция редко расслаивается под действием термических или механических напряжений; она воспринимает нагрузки как однородный материал (за исключением случаев, рассмотренных в § 1.3). Трехслойная же конструкция не является однородной. Заполнитель ее непрочен и может легко отслаиваться. Большое значение имеет прочность его соединения с оболочкой.

Заполнитель представляет собой хороший изолятор, поэтому по сечению трехслойной конструкции возникают перепады температур и, следовательно, внутренние термические напряжения. На широкой палубе, например такой, как палуба катамарана, под лучами жаркого солнца верхняя оболочка может расшириться на 6 мм больше, чем защищенная от них нижняя оболочка. Трехслойная конструкция должна поглотить такое значительное относительное перемещение, в противном случае она расслоится. При использовании жесткого или хрупкого заполнителя, а при высоких напряжениях даже в случае применения полуэластичного пенопласта эта задача невыполнима.

Во время ежегодного обследования одного неэксплуатирующегося катамарана обнаружили значительное расслоение палубного покрытия, которое при предыдущем обследовании отсутствовало и явилось следствием постоянного воздействия солнечных лучей в течение прошедшего жаркого лета. Признаки возникновения напряжений были обнаружены и под мостиковыми палубами катамарана. Напряжения появились ввиду разности температур между открытой лучам солнца верхней палубой и защищенными от них внутренними помещениями.

Предполагается, что термическое расширение служит одной из причин расслоения; возникающие при этом напряжения необходимо учитывать в процессе проектирования судна. В противном случае они будут суммироваться с обычно возникающими при движении судна напряжениями, в результате чего скрытое от глаз повреждение может распространиться. Возникает сомнение, приемлемо ли вообще использование трехслойных формованных конструкций для палубных настилов, особенно в условиях тропического климата и в прибрежных зонах отдыха.

Глава 2. УВЕЛИЧЕНИЕ ЖЕСТКОСТИ

Конструкция, отформованная из стеклопластика, представляет собой в основном тонкую оболочку (исходные материалы слишком дороги, чтобы их можно было расходовать на наращивание излишней толщины), поэтому почти всегда необходимо дополнительно подкреплять ее и увеличивать жесткость. Естественная форма конструкции, сложные криволинейные обводы, гофры, углубления и декоративное рифление в значительной степени повышают жесткость, но для корпуса и надстроек судна, которое больше шлюпки, или вообще для любой крупной конструкции, подвергающейся воздействию нагрузок, такого повышения жесткости недостаточно.

Слоистый стеклопластик, изготовленный на основе полиэфирной смолы, эластичнее многих металлов: при сопоставимой прочности он эластичнее стали в двадцать раз и алюминия в шесть раз. (Не путайте прочность и жесткость: стальная проволока прочна, но эластична, скорлупа яйца жестка, но непрочна.) Как правило, первоочередным является требование обеспечения жесткости, а не максимальной прочности. Однако не следует считать, что стеклопластик как материал похож на резину. Его эластичность близка к эластичности дерева, и он скорее напоминает упругую фанеру, чем мягкую, гибкую резину. Иными словами, стеклопластиковая конструкция обладает прочностью
и толщиной металлической конструкции, а эластичностью деревянной, при этом по массе она ближе к конструкции из дерева, чем из металла (табл. 2).

 

Любая попытка сопоставления стоимости материалов будет бессмысленной, если не учитывать стоимость формования. Дерево и сталь могут быть дешевле как исходные материалы, но для получения из них конструкции требуемой формы необходим большой объем обработки. Более высокая стоимость армированных пластиков полностью компенсируется исключительной простотой и легкостью изготовления из них конструкций и незначительным объемом производственных отходов.

§ 2.1. Способы подкрепления

К основным способам подкрепления формованных конструкций относятся следующие:

  • повышение жесткости за счет конструктивной формы, кривизны, гофров, углублений, декоративного рифления и т. п.
  • увеличение толщины
  • введение в конструкцию ребер и каркасов, получаемых в процессе формования или устанавливаемых дополнительно
  • применение переборок
  • создание местных утолщений в виде валиков и фланцев, осооенно на кромках
  • установка подкрепляющих уголков и стоек
  • применение трехслойных конструкций.

В принципе формованный корпус судна по устройству и технологии изготовления более близок к стальному изделию, получаемому методом обработки давлением листового материала, например, к кузову автомобиля, чем к корпусу судна классической деревянной конструкции.

§ 2.2. Кривизна

Разумно используя кривизну, конструкции можно придать большую дополнительную жесткость без увеличения массы или стоимости. Следует избегать использования плоских панелей. Кривизна конструкции должна быть установлена на стадии проектирования, хотя зачастую углубления и желобы выполняют на более поздней стадии, используя для этого несложные съемные выступы, устанавливаемые в форму. В случае необходимости технологический процесс организуют так, что съемные детали извлекают из формы вместе с готовой конструкцией без дополнительных затруднений. Эти детали крепят к форме с помощью штифтов или винтов, пропускаемых через форму насквозь, или каплями не слишком прочного клея.

Поскольку дополнительные детали устанавливают в готовую форму, их можно видоизменять и совершенствовать без затрат труда, времени и средств на изготовление новой модели и формы.

§ 2.3. Увеличение толщины

Лист металла или фанеры имеет постоянную толщину, поэтому выбор толщины материала определяется максимальным значением напряжений, которые должен выдержать какой-либо его участок. Остальная часть будет иметь завышенную толщину и содержать бесполезно затраченный материал, но при использовании листов постоянной толщины это неизбежно.

Конструкция, отформованная из армированной пластмассы, может иметь переменную толщину, увеличенную в местах, где требуется дополнительная жесткость или прочность, и уменьшенную там, где достаточно одной тонкой оболочки.

Таким образом, квалифицированному конструктору предоставляется прекрасная возможность для проявления своих способностей и получения большой экономии материалов и средств при постройке судна. Известно, что в случае использования достаточно дорогого материала при небольшом количестве отходов существует прямая зависимость между материалоемкостью конструкции и ее стоимостью.

Увеличение толщины — наиболее простой способ повышения жесткости в пределах ограниченного участка, например, для укрепления конструкции в местах установки арматуры или для усиления жесткости таких конструктивных элементов, как киль коробчатого сечения, штевень, комингс и любой естественно образовавшийся или специально запроектированный уголок, буртик или углубление. На больших площадях указанный способ применять нецелесообразно, а более экономично использовать другие средства.

Толщину какой-либо части конструкции можно увеличить не только в процессе формования, но и всегда, когда это необходимо. Для выполнения такой операции не потребуется никакого специального оборудования.

§ 2.4. Недопустимость резких изменений толщины

В любом месте резкого изменения толщины возникает значительная концентрация напряжений. В особенно неблагоприятных случаях это может привести к неожиданному и преждевременному разрушению конструкции.

Например, ступенчатый переход от отформованной в три слоя основной оболочки к участку с местным усилением, состоящему из шести слоев, обусловливает ослабление конструкции вдоль линии перехода, где концентрируются напряжения. В таком соединении под нагрузкой вместо плавной деформации произойдет резкий перегиб (рис. 17).

Наращивать толщину следует постепенно, добавляя по одному слою через определенные интервалы. Например, при удельной массе стекловолокна 450 и 600 г/м2 расстояние между последовательно наращиваемыми слоями будет соответственно равно: минимально допустимое — 25 и 30 мм, рекомендуемое — 40 и 50 мм.

 

Рис. 17. Формование участков переменной толщины:
а — неудовлетворительно изготовленная конструкция (внезапное изменение толщины вызывает возникновение высоких напряжений вдоль кромки и резкий перегиб);
б — грамотно выполненный переход (при постепенном изменении толщины изгиб получается плавным).

Приведенные значения справедливы как для местного, так и для общего увеличения толщины, в случае углового стыка и т. п.
Для других значений удельной массы стекловолокна и других видов усиления соотношения будут пропорциональными. Эти зависимости являются достаточно приближенными, поскольку в условиях формования точные измерения выполнить трудно.

Существует общее правило: если хочешь добиться высокого качества формования, не делай никаких резких переходов. Толщина сечения должна изменяться постепенно. Углы и острые кромки необходимо закруглять, элементы жесткости должны плавно соединяться с другими такими же элементами или сходить на нет. Невозможно избежать резкого перехода только на подрезанной кромке формованной конструкции, но даже она обычно присоединяется к другой конструкции — формованной или деревянной.

§ 2.5. Ребра жесткости коробчатого сечения

Самым распространенным элементом жесткости является формованное коробчатое ребро, сечение которого напоминает по форме шляпу «цилиндр» (рис. 18). Однако часто такое ребро в сечении больше похоже на «котелок» или даже на некое творение из салона дамских шляпок.

 

Рис. 18. Применение ребер жесткости коробчатого сечения:
а — основные элементы;
б — ребро жесткости, отформованное за одно целое (внизу) и приформованное (вверху);
в — виды заполнителей.
1 — формованная оболочка;
2 — заполнитель, не являющийся частью конструкции
3 — Ребро жесткости коробчатого сечения, наформованное поверх заполнителя;
4 — фланец переменной толщины;
5 — распиленная пополам картонная трубка;
6 — надрезанный алюминиевый швеллер или картон;
7 — алюминиевая или пластмассовая труба и прессованные профили или промасленная бумага и ткань;
8 — полукруглый деревянный профиль;
9 — слоистый пенополиуретан;
10 — скатанная газета или бумажная веревка;
11 — частично распиленный брусок или отдельные кусочки дерева.

Основной принцип создания ребра коробчатого сечения заключается в наформовании мокрого стеклопластика поверх заполнителя с целью получения профиля типа швеллера с фланцами («поля шляпы»), которыми ребро присоединяется к конструкции. Такое ребро можно получить в процессе формования или сразу после того, как формование основной оболочки будет завершено, или даже еще позже. Его можно сделать неотъемлемой частью оболочки, накладывая последующие слои материала поверх заполнителя, либо отдельной деталью, присоединяемой к оболочке дополнительно. Для достижения оптимальной прочности данную операцию лучше производить в процессе формования или сразу по его окончании, но до отверждения основной конструкции. Однако практически это не столь важно, поскольку некоторое снижение прочности за счет воздействия различных отрицательных факторов всегда учитывается коэффициентом запаса прочности. Сжатие коробчатого ребра жесткости в процессе отверждения может вызвать деформацию легкой формованной конструкции. Чтобы избежать этого, конструкцию следует закрепить с помощью упоров или зажимов.

Обычно заполнитель рассматривают лишь как форму, поверх которой происходит формование коробчатого ребра жесткости, являющегося конструктивным элементом. Поскольку заполнитель нужен лишь до тех пор, пока стеклопластик не заполимеризуется, не требуется, чтобы он был прочным и долговечным. Вынуть заполнитель по окончании формования невозможно, поэтому его нужно относить к расходуемым материалам. Очевидно, заполнитель должен быть дешевым и легким. Однако в районе киля полезно иметь тяжелый заполнитель, чтобы сократить объем, предназначенный для заполнения балластом.

Следует помнить: прочность обеспечивается формованным коробчатым ребром жесткости, а не заполнителем; именно в этом заключается основной принцип создания конструкции.
Заполнитель должен обладать только достаточной эластичностью или, будучи надрезанным, принимать форму, соответствующую контурам конструкции, а также быть достаточно дешевым. Коробчатое ребро формуется в мокром состоянии, поэтому оно очень легко подгоняется и стыкуется с конструкциями самой сложной формы. Более того, оно с первого же раза получается правильно изготовленным. Не нужно никаких распариваний, подгибаний, примерок, подгонок и повторных примерок, которые могут повлечь за собой большие затраты труда при использовании иных материалов, в исходном состоянии гораздо более дешевых.

Заполнитель может быть изготовлен из любого материала, не оказывающего вредного воздействия на смолы. Он должен легко принимать нужную форму, просто крепиться и не оказывать отрицательных воздействий на материал оболочки при старении. Если же для получения заполнителя необходим большой объем обработки, то проще изготовить сплошное ребро жесткости одним из обычных способов.